首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为________。
admin
2017-01-21
83
问题
设A为二阶矩阵,α
1
,α
2
为线性无关的二维列向量,Aα
1
=0,Aα
2
=2α
1
+α
2
,则A的非零特征值为________。
选项
答案
1
解析
根据题设条件,得
A(α
1
,α
2
)=(Aα
1
,Aα
2
)=(α
1
,α
2
)
记P=(α
1
,α
2
),因α
1
,α
2
线性无关,故P=(α
1
,α
2
)是可逆矩阵。由AP=
可得
P
—1
AP=
则A与B相似,从而有相同的特征值。
因为
|λE—B|=
=λ(λ—1),
所以A的非零特征值为1。
转载请注明原文地址:https://www.kaotiyun.com/show/p9H4777K
0
考研数学三
相关试题推荐
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α23,α3
设函数f(x)在x=2的某邻域内可导,且fˊ(x)=ef(x),f(2)=1,则fˊ〞(2)=_______.
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(E为n阶单位矩阵).
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_______.
设函数f(x)任(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向节,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.β可由α1,α2,α3唯一地线性表示,并求出表示式;
设实对称矩阵,求可逆矩阵P,使P-1AP为对角形矩阵,并计算行列式丨A-E丨的值.
设求y(n).(0).
随机试题
全面质量管理在薪资制度项目中的特点是以个人为单位争取功绩、加薪以及福利。
对多数蛛网膜下隙出血.防止再出血的根本方法是
能翻转肾上腺素升压作用的药物是
若级数收敛,则下列级数中不收敛的是()。
会计核算中,区分权责发生制和收付实现制两种记账基础的会计基本前提是()。
一般存款户可办理转账结算和现金存取业务。()
学前儿童发展的需要是制定学前儿童科学教育目的()。
下列对应关系正确的是:
企业的销售净利润是5%,总资产周转倍数是2,权益乘数是1.5,所有者权益报酬率为()。
OnDecember25,2000,manypeopleacrossNorthAmericareceivedarareChristmastreatwhenthemoonpassedinfrontofthesun
最新回复
(
0
)