首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2015-07-10
87
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立;设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令[*], 构造辅助函数φ(x)=f(x)一k(x一a
1
)(x一a
2
)…(x一a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)一n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ojU4777K
0
考研数学三
相关试题推荐
习近平总书记指出,“冰天雪地也是金山银山”。根据《冰雪旅游发展行动计划(2021-2023年)》,下列说法错误的是()。
习近平总书记指出,各级()要履行党内监督的主体责任,突出加强对“关键少数”特别是“一把手”和领导班子的监督。
关于习近平法治思想,下列说法正确的有几项?()①其深刻回答了新时代为什么实行全面依法治国、怎样实行全面依法治国等一系列重大问题②其是马克思主义法治理论中国化的最新成果③其是中国特色社会主义法治理论的重大创新
2022年国务院政府工作报告指出,过去一年着力保障和改善民生,加快发展社会事业。把更多常见病、慢性病等门诊费用纳入医保报销范围,住院费用跨省直接结算率达到()。
1990年4月4日,第七届全国人大第三次会议审议并通过《中华人民共和国香港特别行政区基本法》,这是“一国两制”方针由构想变为现实进程中里程碑式的事件。30年星移斗转,香港基本法经历了实践的充分检验,展现出强大生命力。实践证明,这是一部能够为“一国两制”伟
材料1 北京大学援鄂医疗队全体“90后”党员: 来信收悉。在新冠肺炎疫情防控斗争中,你们青年人同在一线英勇奋战的广大疫情防控人员一道,不畏艰险、冲锋在前、舍生忘死,彰显了青春的蓬勃力量,交出了合格答卷。广大青年用行动证明,新时代的中国青年是好样的,
求下列函数在指定区间上的最大值、最小值:
求下列函数的所有二阶偏导数:
随机试题
关于腹股沟嵌顿疝手法复位的叙述,下列哪项错误
关于处方药的有关说法正确的是
对已接受青霉素治疗的病人,停药--天以上,必须重新进行过敏试验
高效过滤器安装前需进行外观检查和仪器检漏,应在(),在现场拆开包装并进行安装。
《建设工程施工合同示范文本》合同文件其优先解释顺序是不同的,一般的优先顺序应为()。
关于电子计算机的特点,以下说法错误的是()。
①pH=0的盐酸;②0.5mol·L-1的盐酸;③0.1mol·L-1的NH4Cl溶液;④0.1mol·L-1的NaOH溶液;⑤0.5mol·L-1的NH4Cl溶液。以上溶液中水电离的c(H+)由大到小的顺序是()。
杨贤江写的( ),是我国第一本试图用马克思主义的观点论述教育问题的著作。
请在【答题】菜单中单击【考生文件夹】按钮,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。某学校初中二年级五班的物理老师要求学生两人一组制作一份物理课件。小曾与小张自愿组合,他们制作完成的第一章后三节内容见文档“
Noah’sFullServiceCarwashinGeyservilleWelcomesyoutotheneighborhood!Forover20years,Noah’shasest
最新回复
(
0
)