首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,,证明:存在,使得f’(ξ)+f’(η)==ξ2+η2.
admin
2014-01-26
82
问题
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,
,证明:存在
,使得f’(ξ)+f’(η)==ξ
2
+η
2
.
选项
答案
令[*],由题知F(0)=F(1)=0, F(x)在[*]上用拉格朗日中值定理, [*] ① F(x)在[*]上利用拉格朗日中值定理, [*] ② 两式相加得 f’(ξ)|f’(η)=ξ
2
+η
2
.
解析
[分析] 这是一个双介值的证明题,构造辅助函数,用两次拉格朗日中值定理.
[评注] 一般来说,对双介值问题,若两个介值有关联同时用两次中值定理,若两个介值无关联时用一次中值定理后,再用一次中值定理.
转载请注明原文地址:https://www.kaotiyun.com/show/oh34777K
0
考研数学二
相关试题推荐
已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
设四阶矩阵A=(aij)不可逆,a12的代数余子式A12≠0,a1,a2,a3,a4为矩阵A的列向量组,A*为A的伴随矩阵,则方程组A*x=0的通解为
[2018年]下列函数中,在x=0处不可导的是()
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
(91年)某厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2;销售量分别为q1和q2;需求函数分别为q1=24-0.2p1,q2=10-0.5p2总成本函数为C=35+40(q1+q2)试问:厂家如何确定两个市场的售
(2006年)在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0)。(I)求L的方程;(Ⅱ)当L与直线y=ax所围平面图形的面积为时,确定a的值。
(90年)若线性方程组有解,则常数α1,α2,α3,α4应满足条件_______.
(2004年)设f(x),g(x)在[a,b]上连续,且满足∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt=∫abg(t)dt。证明:∫abxf(x)dx≤∫abxg(x)dx。
随机试题
口腔颌面部血循环丰富,受伤后通常不会导致
心力衰竭时出现的最有害代偿机制是
正常成人颅内压是
热射病治疗首选的措施是
个别游客不去某景点,要求自由活动。如果导游员答应其要求,导游应该(),还要提供必要的协助。
下列哪一项不是终身教育的特点?()
根据以下资料。回答下列问题。2009年,吉林省规模以上工业企业完成增加值2926.65亿元,按可比价格计算,增长16.8%,增幅高于年初规划目标1.8个百分点。其中轻工业实现增加值809.39亿元,增长22.9%;重工业实现增加值2117.26亿元,增长
彩票:中奖:奖金
抗日战争时期中国共产党制定的陕甘宁边区土地法规主要内容包括
Mr.Stevensorderedfull-colorbrochures______theblack-and-whiteoneshepreviouslyhandedoutatthetradefair.
最新回复
(
0
)