首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
构造正交矩阵Q.使得QTAQ是对角矩阵
构造正交矩阵Q.使得QTAQ是对角矩阵
admin
2017-10-21
59
问题
构造正交矩阵Q.使得Q
T
AQ是对角矩阵
选项
答案
(1)先求特征值 [*] A的特征值为0,2,6. 再求单位正交特征向量组 属于0的特征向量是齐次方程组AX=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,一1)
T
,单位化得 [*] 属于2的特征向量是齐次方程组(A一2E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,一1,0)
T
,单位化得 [*] 属于6的特征向量是齐次方程组(A一6E)X=0的非零解, [*] 得AX=0的同解方程组 [*] 求得一个非零解为(1,1,2)
T
,单位化得 [*] 作正交矩阵 Q=(γ
1
,γ
2
,γ
3
),则Q
T
AQ=Q
一1
AQ=[*] (2)先求特征值 [*] A的特征值为1,1,10. 再求单位正交特征向量组 属于1的特征向量是齐次方程组(A—E)X=0的非零解, [*] 得(A—E)X=0的同解方程组x
1
+2x
2
—2x
4
=0, 显然α
1
=(0,1,1)
T
是一个解.第2个解取为α
2
=(c,一1,1)
T
(保证了与α
1
的正交性!),代入方程求出c=4,即α
2
=(4,一1,1)
T
. [*] 再求出属于10的特征向量是齐次方程组(A一10E)X=0的非零解(1,2,一2)
T
,令γ
3
=α
3
/‖α
3
‖=(1,2,一2)
T
/3. 作正交矩阵Q=(γ
1
,γ
2
,γ
3
). 则[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oKH4777K
0
考研数学三
相关试题推荐
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
∫xcos2xdx=__________.
设是连续函数,求a,b.
设n阶矩阵A满足A2+A=3E,则(A一3E)—1=__________.
设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a一2,a一1,则a=________.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求幂级数的和函数.
求幂级数的收敛区间.
设A是n阶实对称矩阵,证明:存在实数c,使对一切x∈Rn,有|xTAx|≤cxTx。
随机试题
A.洪数脉B.浮数脉C.滑数脉D.濡数脉食积化热多见
在一个单处理机系统中,若有5个用户进程,且假设当前时刻为用户态,则处于就绪状态的用户进程最多有_______个。
诎指而事之,北面而受学,则百己者至。(《战国策·燕昭王求士》)
筛查早期宫颈癌最常用的方法是
发生霍乱时,对疫区接触者的检疫期是()
A.伤食积滞B.肝郁脾虚C.脾胃虚弱D.脾肾阳虚E.大肠湿热患者水粪夹杂,下利清谷或五更泄泻,多为()。
同升公司以一套价值100万元的设备作为抵押,向甲借款10万元,未办理抵押登记手续。同升公司又向乙借款80万元,以该套设备作为抵押,并办理了抵押登记手续。同升公司欠丙货款20万元,将该套设备出质给丙。丙不小心损坏了该套设备送丁修理,因欠丁5万元修理费,该套设
Onlybyshoutingatthetopofhisvoice______.
Self-imageisthepictureyouhaveofyourself,thesortofpersonyoubelieveyouare.【B1】______inyourself-imagearethecate
A、HegothistwoticketsbackfromJimyesterday.B、Hewasfinedforviolatingtrafficrulestwice.C、Hewaslateforworkbecau
最新回复
(
0
)