首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
admin
2018-06-15
70
问题
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
选项
答案
f(x)在x=a可展开成 f(x)=f(a)+f’(a)(x-a)+[*]f"(a)(x-a)
2
+… +[*]f
(n)
(a)(x-a)
n
+o((x-a)
n
)(x→a). 由x→a时f(x)是(x-a)的/1,阶无穷小[*] f(a)=f’(a)=…=f
(n-1)
(a)=0,f
(n)
(a)≠0. 又f(x)在x=a邻域n1阶可导,f
(n-1)
(x)在x=a可导. 证明由g(x)=f’(x)在x=a处n-1阶可导[*] g(x)=g(a)+g’(a)(x-a)+…+[*]g
(n-1)
(a)(x-a)
n-1
+o((x-a)
n-1
), 即f’(x)=f’(a)+f"(a)(x-a)+…+[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
) =[*]f
(n)
(a)(x-a)
n-1
+o((x-a)
n-1
). 因此f’(x)是x-a的n-1阶无穷小(x→a).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oDg4777K
0
考研数学一
相关试题推荐
求微分方程(3x2+2xy-y2)dx+(x2-2xy)dy=0的通解.
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=________
微分方程(6x+y)dx+xdy=0的通解是_______
求解微分方程
设随机变量X服从泊松分布,且P{X≤1)=4P{X=2),则P{X=3)=________
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
计算,其中Ω为平面曲线绕z轴旋转一周形成的曲面与平面z=8所围成的区域.
椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是由过点(4,0)且与椭圆相切的直线绕x轴旋转而成.求S1及S2的方程;
求极限w=
设f(x)=nx(1-x)n(n为自然数),求f(x);
随机试题
肺结核的基本影像表现包括
医院的任务不包括
结构中含有二硫键的降血糖药是
疳证病机源于
这种情况发生的最可能原因是最有效的防治措施是
刷涂的顺序是正确的是()
()是判定是否构成操纵市场的关键因素。
客户维持担保比例不得低于150%。()
我国现存最早的《道藏》分别出现在()。
张立是一位单身白领,工作5年积累了一笔存款,由于该笔存款金额尚不足以购房,考虑将其暂时分散投资到股票、黄金、基金、国债和外汇等5个方面。该笔存款的投资需要满足如下条件:(1)如果黄金投资比例高于1/2,则剩余部分投入国债和股票;(2)如
最新回复
(
0
)