首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.
[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.
admin
2019-04-28
80
问题
[2006年] 设α
1
,α
2
,…,α
s
都是n维列向量,A是m×n矩阵,则( )成立.
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关
答案
A
解析
解一 由定义知,若α
1
,α
2
,…,α
s
线性相关,则存在不全为零的数c
1
,c
2
,…,c
s
,使得c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0.用A左乘等式两边,得
c
1
Aα
1
+c
2
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.仅(A)入选.
解二 若α
1
,α
2
,…,α
s
线性相关,则秩([α
1
,α
2
,…,α
s
])
秩([Aα
1
,Aα
2
,…,Aα
s
])=秩(A[α
1
,α
2
,…,α
s
])≤秩([α
1
,α
2
,…,α
s
])
故Aα
1
,Aα
2
,…,Aα
s
线性相关.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/nzJ4777K
0
考研数学三
相关试题推荐
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
已知A=有三个线性无关的特征向量,则a=______.
设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A-2B|=______.
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
随机试题
下列分析方法中属于仪器分析法的是()。
A.弱酸性药物B.弱碱性药物C.强碱性药物D.两性药物E.中性药物在胃中易吸收的药物是()
非水碱量法用的溶剂是()。
陈某向贺某借款20万元,借期2年。张某为该借款合同提供保证担保,担保条款约定,张某在陈某不能履行债务时承担保证责任,但未约定保证期间。陈某同时以自己的房屋提供抵押担保并办理了登记。请回答71~73题。关于贺某的抵押权存续期间及张某的保证期间的说法,下列
某商店为增值税一般纳税人,2012年6月采取“以旧换新”方式销售金项链一条,新项链对外销售价格9000元,项链作价2000元,从消费者收取新旧差价款7000元;另以“以旧换新”方式销售热水器一台,新热水器对外销售价格2000元,旧热水器作价100元,从消费
早期介入在项目的开发建设中有着积极的作用,其与前期物业管理是不同的,主要表现在()。
甲从/4地步行到B地,出发1小时40分钟后,乙骑自行车也从A地出发,骑了10公里时追到甲。于是,甲改骑乙的自行车前进,共经5小时到达B地,这恰是甲步行全程所需时间的一半。问骑自行车的速度是多少公里/小时?(甲、乙骑自行车速度一样)
函数f(x,y)在(0,0)点可微的充分条件是()
A、 B、 C、 D、 B
Collegestudentscaneasily______fromonecurriculumtoanother,fromoneinstitutiontoanother,assuitedtotheirneeds.
最新回复
(
0
)