首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n一2,n是未知数个数,则( )正确.
admin
2017-10-21
81
问题
设线性方程组AX=β有3个不同的解γ
1
,γ
2
,γ
3
,r(A)=n一2,n是未知数个数,则( )正确.
选项
A、对任何数c
1
,c
2
,c
3
,c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解;
B、2γ
1
一3γ
2
+γ
3
是导出组AX=0的解;
C、γ
1
,γ
2
,γ
3
线性相关;
D、γ
1
—γ
2
,γ
2
一γ
3
是AX=0的基础解系.
答案
B
解析
Aγ
i
=β,因此A(2γ
1
一3γ
2
+γ
3
)=2β一3β+β=0,即2γ
1
一3γ
2
+γ
3
是AX=0的解,B正确.
c
1
γ
1
+c
2
γ
2
+c
3
γ
3
都是AX=β的解
c
1
+c
2
+c
3
=1,(A)缺少此条件.
当r(A)=n一2时,AX=0的基础解系包含两个解,此时AX=β存在3个线性无关的解,因此不能断定γ
1
,γ
2
,γ
3
线性相关.C不成立.
γ
1
一γ
2
,γ
2
一γ
3
都是AX=0的解,但从条件得不出它们线性无关,因此D不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/n7H4777K
0
考研数学三
相关试题推荐
判断级数的敛散性.
函数展开成x的幂级数为__________.
设A为三阶矩阵,且|A|=4,则=__________.
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设A=(α1,α2,α3,α4,α4),其中α1,α3,α5线性无关,且α2=3α1一α3一α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
,求极大线性无关组,并把其余向量用极大线性无关组线性表出.
参数a取何值时,线性方程组有无穷多个解?求其通解.
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
将f(x)=*]展开成x一2的幂级数.
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.(1)证明=n;(2)设ξ1,ξ2,…,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,…,ξr,η1,η2,…,ηs线性无关.
随机试题
不属于岗位质量措施与责任的是()。
公共政策的个案研究的证据来源包括()
A,保阴煎B,清经散C,两地汤D,丹栀逍遥散E,清热固经汤由麦冬、生地、玄参、地骨皮、白芍、阿胶组成的方剂是
在城市社会学的调查方法中,以下方法中不属于的是()。
某堤防工程项目业主与承包商签订了工程施工承包合同。合同中估算工程量为5300m3,单价为180元/m3。合同工期为6个月。有关付款条款如下:(1)开工前业主应向承包商支付估算合同总价20%的工程预付款;(2)业主自第一个月起,从承包商的工程款中,按5%
下列对计算机的分类,不正确的是()。
李奶奶没有米了,让我们给她买些。
为了从众多人中选出优秀人才,让水平较高的学生在测验项目上得高分,让水平较低的学生只能得低分,应提高下列哪种指标?()
Lookatthetenstatementsforthispart.Youwillhearapassageabout"GreatTransformation".Youwilllistentoittwice
A、Comparedthebilingualswiththemonolinguals.B、PutAmericanbabiesinChinesefamilies.C、ExposedAmericanbabiestoanewl
最新回复
(
0
)