首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T,问: a,b取何值时,β可由α1,α2,α3线性表示,并写出此表达式。
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,a)T,β=(3,10,b,4)T,问: a,b取何值时,β可由α1,α2,α3线性表示,并写出此表达式。
admin
2018-04-12
74
问题
已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,一1,a)
T
,β=(3,10,b,4)
T
,问:
a,b取何值时,β可由α
1
,α
2
,α
3
线性表示,并写出此表达式。
选项
答案
当b=2,a≠1时,r(A)=[*]=3,线性方程组Ax=β有唯一解,下面求此唯一解。 由以上增广矩阵变换可得线性方程组Ax=β的同解方程组为[*]解得唯一解为 x=(一1,2,0)
T
。故β能由α
1
,α
2
,α
3
线性表出为β=一α
1
+2α
2
。 当b=2,a=1时,r(A)=[*]=2<3,线性方程组Ax=β有无穷多解。求齐次线性方程组Ax=0的基础解系。 齐次线性方程组Ax=0的同解方程组为[*]基础解系所含向量的个数为n一r(A)=3—2=1,选x
2
为自由未知量,取x
2
=1,解得基础解系为ξ=(一2,1,1)
T
。取x
3
=0,解得的一个特解为η
*
=(一1,2,0)
T
,则由非齐次线性方程组解的结构可知,方程组Ax=β的通解为 x=kξ+η
*
=(一2k一1,k+2,k)
T
,k是任意常数。 则β能由α
1
,α
2
,α
3
线性表出,且表示法为无穷多(常数k可以任意),且 β=一(2k+1)α
1
+(k+2)α
2
+kα
3
。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mxk4777K
0
考研数学二
相关试题推荐
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103g/m3)
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
若f(1)=0,f’(1)=1,求函数f(u)的表达式.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设n阶矩阵A非奇异(n≥2),A*是A的伴随矩阵,则
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
设A为3阶实对称矩阵,A的秩为2,且求矩阵A.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
随机试题
依知识产权的地域性,下列说法正确的有()
巴贝奇特别强调劳资协作,提出了固定工资加利润分享制度,以调动劳动者的工作积极性。
宣传具有如下特性:(1)_________。(2)_________。(3)_________。
科学管理理论着重研究的是()
Somepeopleworryaboutmycollectingofthosefascinatingbirdsandanimalsthattheypaytoseeinthezoo.Oneofthequestio
直接利用专家们的知识和经验,提出决策目标及方法,并进行评价和选择的方法是()。
时间点零表示资金运动的时间始点或某一基准时刻,是指日历年度的年初。()
在整理手工会计业务时,重新核对各类凭证和账簿,要求做到()相符。
德意志诗人诺瓦利斯(1772--1801年)认为,哲学是全部科学之母,科学的发展又会推动哲学的进步。他能够举出的最佳论据是()。
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
最新回复
(
0
)