首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
设f(x)在(a,b)内二阶可导,且a<x1<x2<b. (I)若x∈(a,b)时f’’(x)>0,则 对任何x∈(x1,x2)成立; (Ⅱ)若x∈(a,b)时f’’(x)<0,则 对任何x∈(x2,x2)成立.
admin
2016-10-20
85
问题
设f(x)在(a,b)内二阶可导,且a<x
1
<x
2
<b.
(I)若x∈(a,b)时f’’(x)>0,则
对任何x∈(x
1
,x
2
)成立;
(Ⅱ)若x∈(a,b)时f’’(x)<0,则
对任何x∈(x
2
,x
2
)成立.
选项
答案
①因(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).把(2.17)式改写成下面的等价不等式,有 (x
2
-x)[f(x)-f(x
1
)]<(x-x
1
)[f(x
2
)-f(x)], 由拉格朗日中值定理知 (x
2
-x)[f(x)-f(x
1
)]=(x
2
-x)(x-x
1
)f’(ξ
1
),x
1
<ξ
1
<ξ
1
,(x-x
1
)[f(x
2
)-f(x)]=(x-x
1
)(x
2
-x)f’(ξ
2
),x<ξ
2
<x
2
. 由f’’(x)>0知f’(x)单调增加,故f’(ξ
1
)<f’(ξ
2
),由此即知等价不等式成立,从而(Ⅰ)成立. ②引进辅助函数 [*] 故F(x)的图形在[x
1
,x
2
][*](a,b)上为凹的.由F(x
1
)=F(x
2
)=0可知F(x)<0,从而不等式成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/maT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
[*]
写出下列曲线绕指定轴旋转所生成的旋转曲面的方程:(1)xOy平面上的抛物线z2=5x绕x轴旋转;(2)xOy平面上的双曲线4x2-9y2=36绕y轴旋转;(3)xOy平面上的圆(x-2)2+y2=1绕y轴旋转;(4)yOz平面上的直线2y-3z+1
求密度为常数μ,半径为R的球体x2+y2+z2≤R2对位于点(0,0,a)(a>R)处单位质点的引力,并说明该引力如同将球的质量集中在球心时两质点间的引力.
(1)第一类曲线积分的积分弧L是_________的(定向、不定向);利用L的参数方程将这个积分化为定积分时,下限α必须____________上限β.(2)第二类曲线积分的积分弧L是____________的(定向、不定向);利用L的参数方程将这个积分
设F1(x)与F2(x)分别为随机变量,X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为_______.
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数为()
随机试题
下列选项中,显现《天净沙.秋思》主题思想的是()
未恶变的口腔白斑中上皮角化改变不包括
溶剂法分离汉防己甲素和汉防己乙素时,常用
A.汉防己乙素B.阿托品C.四氢巴马汀D.番木鳖碱E.汉防己甲素粉防己碱又称()。
可行性研究主要解决( )等问题。
2017年广西铁路、公路、水路客货运输周转量5055.89亿吨公里,比上年增长8.7%,增速比上年提高3.5个百分点。其中:铁路客货运输周转1113.55亿吨公里,比上年增长8.1%,增速比上年提高4.3个百分点;公路客货运输周转量2493.7
在马克思的《资本论》中,一共提到680多个人物,其中只有一个是中国人,叫王茂荫(1798—1865),安徽人,1832年考中进士步入仕途。他的货币观点及钞币发行方案最为引人注目,著有《王侍郎奏议》传世。马克思《资本论》第一卷第一篇第三章在谈到货币或商品流
简要评价概念形成的理论。
TheannualcampaigntomakeSingapore’sthreemillionpeoplemorepoliteendedyesterdayandwasimmediatelyfollowedbyanother
A、 B、 C、 C本题属于地点对应题。句中表示地点的状语是BeijingAirport(北京机场),因此答案是[C]。
最新回复
(
0
)