首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
admin
2018-04-14
91
问题
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3。
选项
答案
方法一:由麦克劳林公式得 f(x)=f(0)+f’(0)x+[*]f"(0)x
2
+[*]f"’(η)x
3
, 其中η介于0与x之间,x∈[-1,1]。分别令x=-1,x=1并结合已知条件得 f(-1)=f(0)+[*]f"’(η
1
)=0,-1<η
2
<0, f(1)=f(0)+[*]f"’(η
2
)=1,0<η
2
<1, 两式相减,得 f"’(η
2
)+f"’(η
1
)=6。 由f"’(x)的连续性,知f"’(x)在区间[η
1
,η
2
]上有最大值和最小值,设它们分别为M和m,则有 m≤1/2[f"’(η[2])+f"’(η
1
)]≤M。 再由连续函数的介值定理知,至少存在一点ξ∈[η
1
,η
2
][*](-1,1),使 f"’(ξ)=1/2[f"’(η
2
)+f"’(η
1
)]=3。 方法二:构造函数φ(x),使得x∈[-1,1]时φ’(x)有三个零点,φ"(x)有两个零点,从而使用罗尔定理证明ξ必然存在。 设具有三阶连续导数φ(x)=f(x)+ax
3
+bx
2
+cx+d。令 [*] 再代入φ(x)得φ(x)=f(x)-[*]x
3
+[f(0)-[*]]x
2
-f(0)。 由罗尔定理可知,存在η
1
∈(-1,0),η
2
∈(0,1),使φ’(η
1
)=0,φ’(η
2
)=0,又因为φ’(0)=0,再由罗尔定理可知,存在ξ
1
∈(η
1
,0),ξ
2
∈(0,η
2
),使得φ"(ξ
1
)=0,φ"(ξ
2
)=0,再由罗尔定理知,存在ξ∈(ξ
1
,ξ
2
)[*](η
1
,η
2
)[*](-1,1),使 φ"’(ξ)=f"’(ξ)-3=0, 即f"’(ξ)=3。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mRk4777K
0
考研数学二
相关试题推荐
[*]
[*]
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
曲线y=x(x-1)(2-x)与x轴所围成的图形的面积可表示为().
已知边长x=6m与y=8m的矩形,求当z边增加5cm,y边减少10cm时,此矩形对角线变化的近似值.
曲线y=lnx上与直线x+y=1垂直的切线方程为________.
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
证明:区间(a,b)内单调函数f(x)若有间断点,则它必为第一类间断点.
随机试题
化粪池离建筑物净距不宜小于以下哪个数据?[2003年第68题][2004年第69题]
在类风湿关节炎发病中起主要作用的细胞是.
下列疾病中,哪种不容易发生生殖器异常出血
设某△接三相异步电动机的全压起动转矩为66N.m,当对其使用丫-△降压起动方案时,当分别带10N.m、20N.m、30N.m、40N.m的负载起动时()。
【背景资料】某安装公司承包一演艺中心的空调工程,演艺中心地处江边(距离江边100m),空调工程设备材料:双工况冷水机组(650Rt)、蓄冰槽、江水源热泵机组、燃气锅炉、低噪声冷却塔(650t/h)、板式热交换机、水泵、空调箱、风机盘管、各类阀门(
安全专项施工方案的内容应包括()。
有的人观察能力强,有的人动手能力强,有的人善于口头演讲,有的人善于书面写作。这说明人的发展具有()。
关系数据库的基本操作包括()。
____,пожалуйста,гдездесьсправочноебюро?____,медленнее,яплохопонимаюпо-русски.
A、Theyonlyhaveeffectonrealpatients.B、Theyaremoreorlesseffectiveformostpeople.C、Theyarethebestmethodseverfo
最新回复
(
0
)