首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A与B相似,且A=.求可逆矩阵P,使 P-1AP=B.
设矩阵A与B相似,且A=.求可逆矩阵P,使 P-1AP=B.
admin
2016-10-20
83
问题
设矩阵A与B相似,且A=
.求可逆矩阵P,使
P
-1
AP=B.
选项
答案
由于A~B,据(5.5)及(5.7)有 [*] 由A~B,知A与B有相同的特征值,于是A的特征值是λ
1
=λ
2
=2,λ
3
=6. 当λ=2时,解齐次线性方程组(2E-A)x=0得到基础解系为α
1
=(1,-1,0)
T
,α
2
=(1,0,1)
T
,即λ=2的线性无关的特征向量. 当λ=6时,解齐次线性方程组(6E-A)x=0得到基础解系是(1,-2,3)
T
,即λ=6的特征向量. 那么,令P=(α
1
,α
2
,α
3
)=[*],则有P
-1
AP=B.
解析
A与对角矩阵B相似,为求矩阵P应当用相似的性质先求出a,b,然后再求A的特征值与特征向量.可逆矩阵P即为特征值2和b对应的线性无关特征向量构成的矩阵.
转载请注明原文地址:https://www.kaotiyun.com/show/mMT4777K
0
考研数学三
相关试题推荐
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
二次型f(x1,x2,x3)=2x12+x22-4x32-4x1x2-2x2x3的标准形是().
设A与B均为n,阶矩阵,且A与B合同,则().
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
A是n阶矩阵,且A3=0,则().
设n阶矩阵A的元素全为1,则A的n个特征值是________.
随机试题
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
女性,70岁。高血压20余年,冠心病史10余年,乙肝病史30年。半个月前着凉后出现胸闷,气短,偶有咳嗽,白痰,夜间明显,双下肢逐渐水肿,尿少,1周来偶有夜间憋醒,气短加重来诊。查体:BP170/80mmHg,P96次/分,唇微绀,颈静脉怒张,双肺底可闻及小
下列哪一项不是MRI的优势
健脾丸的用药特点是
关于排卵前LH峰的说法正确的是
下列为禁止进境物的是:( )
在领导者的技能当中,按照模型、框架和关系进行思考的能力称为()。
我国统计部门计算和公布的反映失业水平方面的指标是()。
十八届三中全会提出完善国有资本经营预算制度,提高国有资本收益上缴公共财政比例,更多用于保障和改善民生。这是深化国有企业改革、改善国有经济布局、增强国有企业社会责任的重大举措,是坚持和完善基本经济制度的客观要求。国有资本收益上缴公共财政比例,2020年将提高
Whenyouthinkaboutthegrowthofhumanpopulationoverthelastcenturyorso,itisalltooeasytoimagineitmerelyasani
最新回复
(
0
)