首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×3矩阵,β1,β2,β3是互不相同的3维列向量,且都不是方程组Ax=0的解,记B=[β1,β2,β3],且满足r(AB)<r(A),r(AB)<r(B).则r(AB)等于( ).
设A是3×3矩阵,β1,β2,β3是互不相同的3维列向量,且都不是方程组Ax=0的解,记B=[β1,β2,β3],且满足r(AB)<r(A),r(AB)<r(B).则r(AB)等于( ).
admin
2021-07-27
46
问题
设A是3×3矩阵,β
1
,β
2
,β
3
是互不相同的3维列向量,且都不是方程组Ax=0的解,记B=[β
1
,β
2
,β
3
],且满足r(AB)<r(A),r(AB)<r(B).则r(AB)等于( ).
选项
A、0
B、1
C、2
D、3
答案
B
解析
已知β
i
(i=1,2,3)都不是Ax=0的解,即AB≠0,r(AB)≥1.又r(AB)<r(A),则矩阵B不可逆(若B可逆,则r(AB)=r(A),与r(AB)<r(A)矛盾),r(B)≤2,从而r(AB)<r(B)≤2,即r(AB)≤1,从而有r(AB)=1.
转载请注明原文地址:https://www.kaotiyun.com/show/mHy4777K
0
考研数学二
相关试题推荐
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
向量组α1,α2,…,αs线性无关的充要条件是().
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=En.证明:B的列向量组线性无关.
设奇函数f(χ)在[-1,1]上二阶可导,且f(1)=1,证明:(1)存在ξ∈(0,1),使得f′(ξ)=1;(2)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
设A为三阶矩阵,,则|4A一(3A*)—1|=()
设A是n阶矩阵,α是n维列向量,若,则线性方程组()
随机试题
下列属于熊佛西创作的反映农民生活的戏剧的是()
A.上脘、公孙B.合谷、金津、玉液C.脾俞、神阙D.期门、太冲E.丰隆、膻中治疗呕吐之寒吐者,应配用()
甲公司与乙公司约定,由甲公司向乙公司交付1吨药材,乙公司付款100万元。乙公司将药材转卖给丙公司,并约定由甲公司向丙公司交付,丙公司收货后3日内应向乙支付价款120万元。张某以自有汽车为乙公司的债权提供抵押担保,未办理抵押登记。抵押合同约定:“在丙公
()是投资基金正常运作的基础性法律文件。
根据合同法律制度的规定,下列关于债务人向第三人履行的合同的法律效力表述正确的有()。
以下选项中,不属于幼儿园教学特点的是()。
人民警察不论职位高低,(),相互之间是同志关系。
下列操作适合使用VBA而非宏的是
A、 B、 C、 C原文说“David喜欢听收音机”,所以[C]是正确的。
A、Hersupporterspaidthefamilyofthemanshekilled.B、ShegothelpfromtheInternationalLaborOrganization.C、Shearguedt
最新回复
(
0
)