首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为______.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y’’+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通解为______.
admin
2019-02-23
104
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
y’’+p(x)y’+q(x)y=f(x) ①
的3个解,且
则式①的通解为______.
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关即可.
y
1
-y
2
与y
2
-y
3
均是式①对应的齐次线性方程
y’’+p(x)y’+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在不全为零的常数k
1
与k
2
使
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.
若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.
于是
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://www.kaotiyun.com/show/l904777K
0
考研数学一
相关试题推荐
设ξ和η是独立同分布的两个随机变量。已知ξ的分布律为P{ξ=i}=,i=1,2,3,又设X=max{ξ,η},Y=min{ξ,η}。(Ⅰ)写出二维随机变量(X,Y)的分布律;(Ⅱ)求E(X)。
设f(x),g(x)在[a,b]上存在二阶导数,且g〞(x)≠0,f(a)=f(b)=g(a)=g(b)=0,证明:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ε,使得
设方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
设方程组为矩阵A的分别属于特征值λ1=1,λ2=一2,λ3=一l的特征向量.求|A*+3E|.
(Ⅰ)已知由参数方程确定了可导函数y=f(x),求证:x=0是y=f(x)的极大值点.(Ⅱ)设F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)<0.由方
下列二元函数在点(0,0)处可微的是
若幂级数(a>0)的收敛域为(一∞,+∞),则a应满足______.
ex展开成x-3的幂级数为__________.
随机试题
焊接接头的四种基本形式不包括()接头。
可通过设置数据访问页的链接属性,使数据访问页关联数据源。保存该链接数据源信息的数据访问页的属性是()
关于脑囊虫的CT表现,不正确的是
肺结核患者服用两种以上抗结核药的主要理由是
急性心肌梗死患者突然心力衰竭加重,气促,心前区可闻及收缩期杂音,无震颤,考虑为
省级似大地水准面精化中,所利用的数字高程模型的分辨率不应低于()。
代办股份转让服务业务,从基本特征看,可以在证券交易所挂牌,也可以通过证券公司进行交易。( )
“市场失灵”的固有缺陷包括()。
阅读下面的文章,回答问题。李台州名宗质,字某,北人,不知何郡邑。母展,妾也,生宗质而罹靖康之乱,母子相失。宗质以父荫,既长,仕所至必求母,不得。姻家司马季思官蜀,宗质曰:“吾求母,东南无之,必也蜀乎?”从之西。舟所经过州,若县若村市,必登岸,遍其
Punishmentdependsasmuchonpoliticsasitdoesoncrime:crimerateshavebeenstableinrecentyearsbutthere’sbeenastri
最新回复
(
0
)