首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
设有两组n维向量α1,α2,…,αm与β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,kn,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则
admin
2018-07-31
74
问题
设有两组n维向量α
1
,α
2
,…,α
m
与β
1
,β
2
,…,β
m
,若存在两组不全为零的数λ
1
,λ
2
,…,λ
m
和k
1
,k
2
,…,k
n
,使(λ
1
+k
1
)α
1
+…+(λ
m
+k
m
)α
m
+(λ
1
一k
1
)β
1
+…+(λ
m
一k
m
)β
m
=0,则
选项
A、α
1
,…,α
m
和β
1
,…,β
m
都线性相关.
B、α
1
+β
1
,…,α
m
+β
m
,α
1
一β
1
,…,α
m
一β
m
线性相关.
C、α
1
,…,α
m
和β
1
,…,β
m
都线性无关.
D、α
1
+β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
线性无关.
答案
B
解析
由条件知有不全为零的数λ
1
,…,λ
m
,k
1
,…,k
m
,使λ
1
(α
1
+β
1
)+…+λ
m
(α
m
+β
m
)+k
1
(α
1
—β
1
)+…+k
m
(α
m
—β
m
)=0,所以,向量组α
1
—β
1
,…,α
m
+β
m
,α
1
—β
1
,…,α
m
—β
m
必线性相关。
转载请注明原文地址:https://www.kaotiyun.com/show/l5g4777K
0
考研数学一
相关试题推荐
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在(一∞,+∞)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫ab|f(x)dx一(b一a)f(a)|≤(b一a)2.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
证明:若A为n阶方阵,则有|A*|=|(一A)*|(n≥2).
设A=(aij)为n阶方阵,证明:对任意的n维列向量X,都有XTAX=0,A为反对称矩阵.
随机试题
“J422”是结构钢焊条牌号完整的表示方法,其中“42”表示熔敷金属的抗拉强度最大值为420MPa。()
A.Bachmann束B.James束C.传导速度比心房肌慢D.P波增宽切迹E.具有潜在自律性结间束损伤可引起
下列哪些药物可以用来治疗阵发性室上性心动过速
新城疫病鸡腺胃常见的病理变化是
患者,男,60岁。因巴比妥中毒急诊入院,立即给予洗胃,应选择的灌洗溶液是
患者,女性,27岁。因脑外伤昏迷入院,为供给营养和水分给予鼻饲。为患者插鼻饲管至15cm时要将患者头部托起。目的是
个人经营贷款最长一般不超过()年。
简述创新教育在素质教育中的地位。
______wasthehomeoftheLakePoetsWilliamWordsworth,SamuelTaylor,ColeridgeandRobertSoutheyof19thcenturyBritain.
区别故意杀人罪与故意伤害罪的.关键是( )。
最新回复
(
0
)