首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,B为n×m矩阵,若矩阵AB可逆,则下列说法中正确的是( )
设A为m×n矩阵,B为n×m矩阵,若矩阵AB可逆,则下列说法中正确的是( )
admin
2019-12-24
78
问题
设A为m×n矩阵,B为n×m矩阵,若矩阵AB可逆,则下列说法中正确的是( )
选项
A、A的行向量组线性无关,B的行向量组也线性无关。
B、A的行向量组线性无关,B的列向量组线性无关。
C、A的列向量组线性无关,B的行向量组线性无关。
D、A的列向量组线性无关,B的列向量组也线性无关。
答案
B
解析
由矩阵AB可逆,可知r(AB)=m,而r(A)≥r(AB),r(B)≥r(AB),且有r(A)≤m,r(B)≤m,可知r(A)=r(B)=m。因此,矩阵A行满秩,矩阵B列满秩,即A的行向量组线性无关,B的列向量组线性无关。
本题考查矩阵的秩的比较,用到的矩阵秩的相关性质包括r(A+B)≤r(A)+r(B),r(AB)≤min{r(A),r(B)}。
转载请注明原文地址:https://www.kaotiyun.com/show/l1D4777K
0
考研数学三
相关试题推荐
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,-2,4,0)T,c为任意。记B=(α3,α2,α1,β-α4),求方程组Bx=α1-α2的通解。
设a是一个常数,则I==_________________________。
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当xε(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足=t3(t≥0),则f(x)的表达式是_________________________。
在区间(0,1)中任取两数,求这两数乘积大于0.25的概率.
设B=(A+kE)2.(1)求作对角矩阵D,使得B~D.(2)实数k满足什么条件时B正定?
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设连续型随机变量X的分布函数为其中a>0,ψ(x),φ(x)分别是标准正态分布的分布函数与概率密度,令求Y的密度函数.
已知随机变量X的分布函数FX(x)=(λ>0),Y=lnX.(I)求Y的概率密度fY(y);(Ⅱ)计算
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为求证:服从参数为15的t分布.
设f(x)在[0,1]上二阶连续可导且f(o)=f(1),又|f"(x)|≤M,证明:|f’(x)|≤.
随机试题
注射白喉抗毒素属于()
在消防水源的维护管理中,应()对消防水池、高位消防水池、高位消防水箱等消防水源设施的水位等进行一次检测。
下列设备中,不属于网络连接设备的是()。
我国的债券的利息计算主要以()计算为主
2012年1月2日20时许,在A县发生了一起交通逃逸事故。事故发生后,A县公安局交通警察大队到现场勘查,并根据受害人的描述和指认的逃逸方向进行摸排,发现辛某所有的农用三轮车发动机温热、车身左侧有明显划痕,遂开具《扣押决定书》将该车扣押。2012年1月20日
自治区的自治条例和单行条例经()批准后生效。
A、 B、 C、 D、 B
设(X,Y)服从G={(x,y)|x2+y2≤1}上的均匀分布,试求给定Y=y的条件下X的条件概率密度函数fX|Y(x|y).
Itisgenerallyagreedthat_____werethefirstEuropeanstoreachAustralia’sshores.
A、She’sunabletogettheticketintime.B、Shedoesn’tknowhowtousethemachine.C、She’snotsurehowmuchthetripwillcos
最新回复
(
0
)