首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Distribution of Seaweed P1: Vegetation of the sea is more primitive on the evolutionary scale than that of the land. Different v
Distribution of Seaweed P1: Vegetation of the sea is more primitive on the evolutionary scale than that of the land. Different v
admin
2018-10-18
58
问题
Distribution of Seaweed
P1: Vegetation of the sea is more primitive on the evolutionary scale than that of the land. Different varieties of seaweed vary tremendously in form and elaborateness of organization, ranging from single-celled, microscopic flagellates to giant kelp which grow to be five or six hundred feet long. They have no flowers or seeds, their reproduction and distribution being accomplished by asexual spores which are simpler structures than seeds. They do not have roots but are anchored to the substratum by a structure called a "holdfast" and absorb necessary mineral nutrients directly from the sea water through their leaf-like fronds. Like land plants, they possess chlorophyll and carry out photosynthesis, through which they utilize the energy of sunlight to synthesize carbohydrates, proteins, and fats from water, carbon dioxide, and, as required, other inorganic chemicals. These products differ chemically from their analogues in land plants, however.
P2: Seaweeds are found throughout the world’s oceans and seas, inhabiting about 2 percent of the seafloor. Most species of seaweed live directly on the seafloor where they grow on rock, sand, mud, and coral. Other species live on other organisms and as part of artificial surfaces like fouling communities (plants and animals that live on pilings, boat bottoms, and the like). Some seaweeds are very selective about the surfaces they attach to, whereas other seaweeds do not have this degree of specialization. The presence of benthic (living on the seafloor) seaweeds defines the inner continental shelf, where the marine community largely depends on the food and protection that seaweeds provide. Life on the outer continental shelf and in the deep sea is quite different in the absence of seaweeds. The distinction between the inner and outer shelves is based on the compensation depth of algae. The compensation depth is the depth of water at which there is just enough light for algae to survive. At that depth all the oxygen produced by photosynthesis is consumed by the algae’s respiration, so that no further growth can occur.
P3: Seaweed boundaries are not necessarily stable. The areas of the world most favorable to seaweed diversity include both sides of the North Pacific Ocean, Australia, southwestern Africa, and the Mediterranean Sea. Several physical and biological factors have been mentioned as potentially restrictive to seaweed distribution. Among these, temperature, sometimes in combination with some specific day length requirements for reproduction, is probably the most important. Some other factors critical in governing the distribution of seaweeds are duration of tidal exposure and desiccation, wave action and surge, salinity, and availability of mineral nutrients.
P4: Adaptation as applied to marine algae provides one of the simplest and most attractive examples of the physiological adaptation of plants to the environmental conditions in which they live. It is almost certainly for this reason that the theory was proposed that the vertical distribution of red, brown, and green algae could be explained by their accessory photosynthetic pigments, the presence of which gives the seaweeds their characteristic colors, a concept known as chromatic adaptation. The most frequently cited evidence involving marine algae is a study by Levring (1947), in which the photosynthesis of green algae was shown to decrease with depth in coastal waters more rapidly than the underwater irradiance. The concept of chromatic adaptation was proposed in 1883 and was accepted for about 100 years, until it was realized that such zonation did not necessarily occur and that the distribution of seaweeds depended more on herbivory (the consumption of plant material), competition, varying concentration of the specialized pigments, and the ability of seaweeds to alter their forms of growth. Indeed, some recent evidence would seem to support the hypothesis of chromatic adaptation because the depth record (295 meters, or 973 feet) for seaweeds is held by a yet undescribed species of red algae from the Bahamas. However, the green alga Rhipiliopsis profunda is close behind this record at 268 meters (884 feet).
P5: Temperature determines the performance of seaweeds, and indeed all organisms, at the fundamental levels of enzymatic processes and metabolic function. The greatest diversity of algal species is in tropical waters. Theoretically, increased warmth should fuel the growth of seaweed—as evidenced by seasonal dead zones that form at the mouths of many rivers worldwide when the plants bloom, die and, while decaying, suck up all the available oxygen in the seawater. But temperature is not usually a limiting factor for algae that live in tropical and subtropical seas, although temperatures in intertidal areas (those areas between high and low tides) may become too warm and contribute to seasonal mass mortality of many seaweeds and the animals they shelter. Some researchers found that increasing temperatures, although initially enhancing the growth of phytoplankton, also allowed increased grazing by zooplankton (microscopic animals) and bacteria. "As temperature rises, the zooplankton start to grow faster than the phytoplankton," O’Connor explains. "The zooplankton are more abundant and faster-growing, and are able to eat all the phytoplankton in warmer water. This creates a bottleneck in the food chain that could have large implications for the ocean’s food web."
P2: Seaweeds are found throughout the world’s oceans and seas, inhabiting about 2 percent of the seafloor. Most species of seaweed commonly live directly on the seafloor where they grow on rock, sand, mud, and coral. Other species live on other organisms and as part of artificial surfaces like fouling communities (plants and animals that live on pilings, boat bottoms, and the like). Some seaweeds are very selective about the surfaces they attach to, whereas other seaweeds do not have this degree of specialization. ■ The presence of benthic (living on the seafloor) seaweeds defines the inner continental shelf, where the marine community largely depends on the food and protection that seaweeds provide. ■Life on the outer continental shelf and in the deep sea is quite different in the absence of seaweeds.■The compensation depth is the depth of water at which there is just enough light for algae to survive. At that depth all the oxygen produced by photosynthesis is consumed by the algae’s respiration, so that no further growth can occur.■
An introductory sentence for a brief summary of the passage is provided below. Complete the summary by selecting the THREE answer choices that express the most important ideas in the passage. Some answer choices do not belong in the summary because they express ideas that are not presented in the passage or are minor ideas in the passage. This question is worth 2 points. Drag your choices to the spaces where they belong. To review the passage, click on View Text.
Seaweeds are multicellular algae living in the oceans.
Answer Choices
A Seaweeds are limited to areas with enough light for them to survive, with most living on the seafloor and more species inhabiting warm waters than colder waters.
B Some recent evidence shows that the color of any species of seaweed is determined by the amount of chlorophyll a contained in its accessory pigments.
C The greatest diversity of seaweed is found in warm waters, and seaweed cannot survive when the temperature is either too hot or too cold.
D Seaweeds are distributed most evenly over both sides of the North Pacific Ocean, Australia, southwestern Africa, and the Mediterranean Sea.
E The chromatic-adaptation hypothesis was long thought to explain the vertical distribution of seaweed, but current belief is that distribution is better explained by other factors.
F The growth of phytoplankton accelerates the bloom of zooplankton surviving on slaughtering the marine algae, which in turn creates a bottleneck in the food chain.
选项
答案
A,C,E
解析
【文章总结题】本文介绍了海藻的分布情况。海藻生存的必要条件是光线,大多数海藻长在海底;重点介绍了一种色适应理论,这个理论原本被长期接受,后被推翻;温度上升时海藻数量也会增加,但温度过高时海藻又无法存活。因此涉及影响海藻分布因素的A、C、E选项正确。B、D、F三个选项都属于细节,偏离主旨。
转载请注明原文地址:https://www.kaotiyun.com/show/kufO777K
0
托福(TOEFL)
相关试题推荐
ChooseTHREEletters,A-ETheinventionofdifferentgearsonabicycleaffectedwhichTHREEofthefollowing?AWheelsizeBBa
Completethetablebelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.Talkingaboutthehistoryofbikes
Listentothedirectionsandmatchtheplacesinquestions11-15totheappropriateplaceamongA-Eonthemap.HealthCentre
Completethenotesbelow.WriteNOMORETHANTWOWORDSforeachanswer.HistoryofweatherforecastingE
Completethenotesbelow.WriteONEWORDONLYforeachanswer.EffectsofurbanenvironmentsonanimalsIntroductionRecenturba
Whatdidthewomanfinddifficultaboutthedifferentresearchtechniquessheused?ChooseFIVEanswersfromtheboxandwritet
WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.MonarchButterfliesHibernationButterflyspeciesadoptdifferent
WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.MonarchButterfliesHibernationButterflyspeciesadoptdifferent
equipment本题有关埃及卫生项目的运作方式。录音原文中的weregiven是题目中wereprovidedwith的同义转述;asewingmachineoraloom是sewingandweaving的同义转述。
ThepassagemainlydiscusseshowheatTheword"it"inline18refersto
随机试题
电热式膨胀阀目前多应用于()制冷装置中。
A.肺总量B.肺扩散容量C.肺活量D.用力呼气量E.残气量尽力吸气后再尽力呼气,所能呼出的最大气量是
手法检查肋骨骨折的可靠措施是
患者,男,30岁。牙床肿大近半年加重。检查:全口牙龈肿大,上前牙龈明显,质硬,探触出血,袋深3~5mm,增生龈覆盖1/2牙冠,龈缘有菌斑。X线片示牙槽骨无吸收。有服环孢素史。临床诊断为药物性牙龈增生。该病在基础治疗后应采取的手术方法是
雷尼替丁治疗十二指肠溃疡的作用机制是
与生成月度进度报告有关的数据处理流程属于()。
为消除经营者集中对竞争造成的不利影响,反垄断执法机构可以在批准集中时附加业务剥离的条件。下列关于业务剥离的表述中,符合反垄断法律制度规定的有()。
A注册会计师负责审计甲公司20×8年度财务报表。在考虑设计和实施审计程序以发现管理层舞弊行为时,A注册会计师遇到下列情形,请代为做出正确的专业判断。在下列情形中,可能表明管理层存在舞弊借口的有()。
Ifyoumisstheculturalreferences______aword,you’reverylikelytomissitsmeaning.
关系数据库的任何检索操作都是由3种基本运算组合而成的,这3种基本运算不包括______.
最新回复
(
0
)