首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
设齐次线性方程组 的系数矩阵为A= 设Mi(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明: (Ⅰ)(M1,-M2,…,(-1)n-1Mn)是方程组的一个解向量; (Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M1,-M2,…,(-1
admin
2019-05-14
72
问题
设齐次线性方程组
的系数矩阵为A=
设M
i
(i=1,2,…,n)是A中划去第i列所得到的n-1阶子式。证明:
(Ⅰ)(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个解向量;
(Ⅱ)如果A的秩为n-1,则方程组的所有解向量是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
选项
答案
(Ⅰ)作n阶行列式 D
i
=[*],i=1,2,…,n-1。 因为D
i
的第一行与第i+1行是相同的,所以D
i
=0。 D
i
的第一行元素的代数余子式依次为M
1
,-M
2
,…,(-1)
n-1
M
n
,将D
i
按第一行展开,得 a
i1
M
1
+a
i2
(-M
2
)+…+a
in
[(-1)
n-1
M
n
]=0,(i=l,2,…,n-1), 这说明(M
1
,-M
2
,…,(-1)
n-1
M
n
)满足第i(i=1,2,…,n-1)个方程,故它是方程组的一个解。 (Ⅱ)因为R(A)=n-1,所以方程组的基础解系所含解向量的个数为n-(n-1)=1,同时因为R(A)=n-1,说明A中至少有一个(n-1)阶子式≠0,即M
1
,M
2
,…,M
n
不全为0,于是(M
1
,-M
2
,…,(-1)
n-1
M
n
)是方程组的一个非零解,它可作为方程组的一个基础解系。故方程组的解都是(M
1
,-M
2
,…,(-1)
n-1
M
n
)的倍数。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ki04777K
0
考研数学一
相关试题推荐
设an是绝对收敛的级数,证明由an的一切正项组成的级数pn是收敛的;由an的一切负项组成的级数(一qn)也是收敛的。
设f(x)是周期为2的周期函数,它在区间(一1,1]上定义为则f(x)的傅里叶级数在x=1处收敛于___________。
计算二重积分,其中D是第一象限内由圆x2+y2=2x及直线y=0所围成的区域。
将一枚骰子独立地重复掷n次,以Sn表示各次掷出的点数之和.(Ⅰ)证明:当n→+∞时,随机变量Un=的极限分布是标准正态分布;(Ⅱ)为使P{|-3.5|<0.10}≥0.95,至少需要将骰子重复掷多少次?
设y=g(χ,z),而z=z(χ,y)是由方程f(χ-z,χy)=0所确定,其中函数f,g均有连续偏导数,求.
甲、乙二人各自独立地对同一试验重复两次,每次试验的成功率甲为0.7,乙为0.6,试求二人试验成功次数相同的概率.
下列区域D上,是否与路径无关?是否存在原函数?若存在,求出原函数.(Ⅰ)D:χ2+y2>0;(Ⅱ)D:y>0;(Ⅲ)D:χ<0;(Ⅳ)D:平面除去射线:y=0,-∞<χ≤0.(若存在原函数,不要求求原函数.)
向直线上掷一随机点,假设随机点落入区间(-∞,0],(0,1]和(1,+∞)的概率分别为0.2,0.5和0.3,并且随机点在区间(0,1]上分布均匀.设随机点落入(-∞,0]得0分,落入(1,+∞)得1分,而落入(0,1]坐标为x的点得x分.试求得分X的分
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积,求曲线y=y(x)的方程.
求正交变换化二次型x12+x22+x32-4x1x2-4x2x3-4x1x3为标准形.
随机试题
履行集体合同发生争议,当事人协商解决不成的,可以向劳动争议仲裁委员会申请仲裁;对仲裁裁决不服的,向人民法院提起诉讼必须是在收到仲裁裁决书之日起多长时间内()
在社会主义初级阶段,生产要素参与分配的根据是()
真核生物中tRNA和5SrRNA的转录由下列哪一酶催化()
对烧结普通砖应注意的质量指标是( )。
如果国债与非国债在除品质外其他方面均相同,则两者间的收益率差额有时也被称为是“品质利差”或“市场板块内利差”,反映了国债发行条款与其他债券发行条款之间的差异。()
莱河酒厂自制白酒用作职工福利,则计提白酒应纳的消费税的正确会计分录为()。
在计算企业所得税应纳税所得额时,下列项目准予从收入总额中扣除的是()。
地方人民政府对违反《中华人民共和国教师法》规定,拖欠教师工资或者侵犯教师其他合法权益的,应当()。
冻土问题是青藏铁路建设的难题之一。冻土是由固体矿物颗粒未冻水、冰和气体组成的一种特殊土壤。铁路路基的修建,改变了冻土的物理特性,引起土融化下沉,或者冻结膨胀,严重危及路基的_____________,会给列车运营带来隐患。
()可以依法对公民的通信内容进行检查。
最新回复
(
0
)