首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证: (Ⅰ)在开区间(a,b)内g(x)≠0; (Ⅱ)在开区间(a,b)内至少存在一点ξ,使
admin
2017-12-29
111
问题
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b) =g(a)=g(b)=0,试证:
(Ⅰ)在开区间(a,b)内g(x)≠0;
(Ⅱ)在开区间(a,b)内至少存在一点ξ,使
选项
答案
(Ⅰ)利用反证法。假设存在c∈(a,b),使得g(c)=0,则对g(x)在[a,c]和[c,b]上分别应用罗尔定理,可知存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得g’(ξ
1
)=g’(ξ
2
)=0成立。 接着再对g’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,可知存在ξ
3
∈(ξ
1
,ξ
2
),使得g"(ξ
3
)=0成立,这与题设条件g"(x)≠0矛盾,因此在开区间(a,b)内g(x)≠0。 (Ⅱ)构造函数F(x)=f(x)g’(x)—g(x)f’(x),由题设条件得,函数F(x)在区间[a,b]上是连续的,在区间(a,b)上是可导的,且满足F(a)=F(b)=0。根据罗尔定理可知,存在点ξ∈(a,b),使得F’(ξ)=0。即f(ξ)g"(ξ)一f"(ξ)g(ξ)=0, 因此可得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/khX4777K
0
考研数学三
相关试题推荐
向半径为r的圆内随机抛一点,求此点到圆心之距离X的分布函数F(x),并求
某考生想借张宇编著的《张宇高等数学18讲》,决定到三个图书馆去借,对每一个图书馆而言,有无这本书的概率相等;若有,能否借到的概率也相等,假设这三个图书馆采购、出借图书相互独立,求该生能借到此书的概率.
设函数x=x(y)由方程x(y—x)2=y所确定,试求不定积分
当上述级数收敛时,求其和函数S(x),并求∫ln2ln3S(x)dx.
求级数
设u1=2,un+1=收敛.
设φ(x)是以2π为周期的连续函数,且Ф(x)=φ(x),Ф(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
求微分方程的通解,并求满足y(1)=0的特解.
设数列{xn}由递推公式xn=(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证xn存在,并求此极限.
随机试题
差别模式的提出者是()
教学永远具有教育性,单纯传授知识的教学是没有的。
肌松药过量中毒致死的主要原因是
借用其他施工单位()的行为,属于以其他企业名义承揽工程。
分开募集是指基金以子份额的代码进行分开募集,通过比例配售实现子份额的配比。分开募集的分级基金通常为()。
复利终值系数的公式是()。
()是一篇文章的核心、灵魂、主帅。
破坏性创新是指将产品或服务透过科技性的创新,并以低价特色针对特殊目标消费族群,突破现有市场所能预期的消费改变。根据上述定义,下列不属于破坏性创新的是:
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
使用的数据表结果如下:图书(总编号C(6),分类号C(8),书名C(16),作者C(6).出版单位C(20),单价N(6,2))读者(借书证号C(4),单位C(8),姓名C(6),性别C(2),职称C(6),地址C(20))借阅(借书证号C(4),总
最新回复
(
0
)