首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程( )的通解.
admin
2016-10-20
57
问题
设C
1
和C
2
是两个任意常数,则函数y=e
x
(C
1
cos2x+C
2
sin2x)+sinx是二阶常系数线性微分方程( )的通解.
选项
A、y’’-2y’+5y=4cosx-2sinx
B、y’’-2y’+5y=4sinx-2cosx
C、y’’-5y’+2y=4cosx-2sinx
D、y’’-5y’+2y=4sinx-2cosx
答案
B
解析
由二阶常系数线性微分方程通解的结构知,e
x
cos2x与e
x
sin2x是二阶常系数齐次线性微分方程y’’+ay’+by=0两个线性无关的特解.从而特征方程λ
2
+aλ+b=0的两个特征根应分别是λ
1
=1+2i,λ
2
=1-2i,由此可得λ
2
+aλ+b=(λ-1-2i)(λ-1+2i)=(λ-1)
2
-(2i)
2
=
λ
2
-2λ+1+4=λ
2
-2λ+5,即a=-2,b=5.
由二阶常系数线性微分方程通解的结构又知sinx应是非齐次方程y’’-2y’+5y=f(x)的一个特解,
故 f(x)=(sinx)’’-2(sinx)’+5sinx=4sinx-2cosx.
综合即得所求方程为y’’-2y’+5y=4sinx-2cosx.应选(B).
转载请注明原文地址:https://www.kaotiyun.com/show/keT4777K
0
考研数学三
相关试题推荐
ln3
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:(1)|x-a|20与x≤20;(3)x>20与x20与x≤22;(5)“20件产品全是合格品”与“20件产品中恰有一件是废品”;(6)“20件产品全是合
利用概率测度的性质证明:在投掷两枚硬币的试验中,第一枚是均匀的当且仅当P({(H,H),(H,T)})=1/2;第二枚硬币是均匀的当且仅当P({(H,H),(T,H)})=1/2,其中H表示硬币出现的是正面,T表示硬币出现的是反面.
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
作适当的变换,计算下列二重积分:
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
下列各题中均假定fˊ(x。)存在,按照导数定义观察下列极限,指出A表示什么:
随机试题
正常人体温常有变异,下列说法错误的是
属于混合毒型的毒蛇有
男性,27岁,既往有消化道溃疡病史4年,突发上腹部刀割样疼痛,迅速蔓延至全腹,服抗生素后不能缓解,症状加重,遂于6小时后于急诊求治,经X线诊断为:消化道穿孔,腹膜炎。引起继发性腹膜炎的细菌中,最多见的是
2013年5月,张某、王某、李某共同出资设立了甲普通合伙企业(下称甲企业),合伙协议约定由张某执行合伙企业事务,且约定超过10万元的支出张某无权自行决定。合伙协议就执行合伙事务其他事项未作特别约定。2014年3月,张某的朋友刘某拟从银行借款8万元,请求张
损失赔偿应该以保险责任范围内的损失发生为前提,即有损失发生则有损失赔偿,无损失则无赔偿。损失赔偿金额受到()的限制。
教科书编写应遵循哪些基本原则?
数学系的学生也学了不少文科课程,王颖是数学系的学生,所以她也学了不少文科课程。以下哪项论证展示的推理错误与上述论证中的最相似?
0被积函数是奇函数,在对称区间[一2,2]上积分为零.
Ifincomeistransferredfromrichpersonstopoorpersonstheproportioninwhichdifferentsortsofgoodsandservicesarepro
Cleaningupourairmayhavemadeushealthier.Anewanalysisshowsthatthenumberofstormsfallswhenpollutionrises,andi
最新回复
(
0
)