首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
admin
2022-09-14
57
问题
设A为三阶实对称矩阵,
为方组AX=0的解,
为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
选项
答案
[*]
解析
显然
为A的特征向量,其对应的特征值分别为λ
1
=0,λ
2
=2,
因为A为实对称阵,所以ξ
1
T
ξ
2
=k
2
-2k+1=0,解得k=1,
又因为|E+A|=0,所以λ
3
=-1为A的特征值,令λ
3
=-1对应的特征向量为
转载请注明原文地址:https://www.kaotiyun.com/show/kXf4777K
0
考研数学二
相关试题推荐
构造非齐次方程组______,使得其通解为(1,0,0,1)T+c1(1,1,0,-1)T+c2(0,2,1,1)T,c1,c2任意.
设z=f(x+y,y+z,z+z),其中f连续可偏导,则=_____
=_______.
设f(x)连续,f(0)=1,则曲线在(0,0)处的切线方程是___________.
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是_________.
已知y1=e3x一xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=_________。
r=a(1+cosθ)在点(r,θ)=(2a,0),(a,),(0,,π)处的切线方程分别为_______.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得f(b)-f(a)=ξf′(ξ)ln.
已知函数y(χ)可微(χ>0)且满足方程y(χ)-1=则y(χ)=_______.
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明:存在唯一的ξ∈[a,b]使f(ξ)=ξ.
随机试题
计算∫xsin2xdx.
一般百日咳症状表现中鸡鸣吼声出现在
男性患者,56岁。患高血压多年,近日受情感刺激,突然出现头痛、头晕,恶心、呕吐3次,四肢抽搐。查血压260/130mmHg,神清,颈无抵抗,视乳头水肿。诊断为
关于子宫的描述,下列哪项是错误的
下列房屋得房率中,在建筑面积相同的情况下,房屋使用面积最小的是()的房屋。
某居民企业2013年度取得营业收入总额2000万元,发生营业成本900万元、财务费用200万元、管理费用300万元、销售费用200万元、营业税金及附加120万元,“营业外支出”账户中列支对子公司的赞助支出7万元、通过公益性社会团体向灾区捐赠40万元,预缴所
“销项税额=销售额×税率”中的“销售额”不包括()。
警察要求司机停车,司机就必须将车开到路边停下,这种现象是()。
分手不仅令人心理痛苦,还可能造成身体疼痛。美国研究人员征募40名志愿者,他们在过去半年中被迫与配偶分手,至今依然相当介意遭人拒绝。研究人员借助功能性磁共振成像技术观察志愿者的大脑活动,结果发现他们对分手等社会拒绝产生反应的大脑部位与对躯体疼痛反应的部位重合
【B1】【B5】
最新回复
(
0
)