首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
admin
2016-11-03
75
问题
已知四元齐次线性方程组(i)
的解全是四元方程(ii)x
1
+x
2
+x
3
=0的解.
(1)求a的值;
(2)求齐次方程组(i)的通解;
(3)求齐次方程(ii)的通解.
选项
答案
(1)因方程组(i)的解全是方程(ii)的解,故方程组(i)与方程组(iii) [*] 同解,且其系数矩阵 [*] 有相同的秩,因而a≠0.这是因为:如a=0,则r(A)=1,r(B)=2. 当a≠0时,易求得r(A)=3.这是因为A中有子行列式 [*] 对B进行初等行变换,得到 [*] 故当2a-1=即a=1/2时,r(B)=3.此时方程组(i)与方程组(iii)同解. (2)由A→[*]及基础解系的简便求法,即得方程组(i)的基础解系为 α=[一1/2,一1/2,1,1]
T
, 其通解为kα,k为任意实数. (3)注意到方程(ii)为四元方程,即x
1
+x
2
+x
3
+0x
4
=0.由 [*] 即可写出其基础解系为 β
1
=[一1,1,0,0]
T
, β
2
=[一1,0,1,0]
T
, β
3
=[0,0,0,1]
T
, 其通解为 k
1
β
1
+k
2
β
2
+k
3
β
3
, 其中k
1
,k
2
,k
3
为任意常数.
解析
由题设可作出与方程组(i)同解的方程组,即将方程组(i)与方程(ii)联立得方程组(iii).再利用同解的必要条件:方程组(i)与方程组(iii)的系数矩阵的秩必相等.由此确定a,再用基础解系的简便求法,即可分别求得方程组(i)与方程(ii)的基础解系,写出其通解.
转载请注明原文地址:https://www.kaotiyun.com/show/kHu4777K
0
考研数学一
相关试题推荐
差分方程yt+1-yt=t2t的通解为_______.
行列式为f(x),则方程f(x)=0的根的个数为
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5f(5))处的切线的斜率为().
将函数f(x)=展开成x-1的幂级数,并指出其收敛区间.
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
(2007年试题,17)求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值和最小值.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
随机试题
简述艺术语言及其特性。
慢性腹泻的表现不正确的是
奶牛,表现痛性咳嗽,叩击胸壁时咳嗽增多并躲闪,胸腔穿刺见有含有大量纤维蛋白的黄色液体,X线检查肺部无明显异常,则该奶牛呈现
背景某工程建设在一老厂区最东侧的狭窄场地。该工程特点为是场地附近建筑物较多,皮带通廊和各种管道纵横交错,且有150m高烟囱两座,周围交通非常不便。某承包方同发包方签订了该工程的建设施工合同,约定工期12个月,开工日期为3月8日,竣工日期为次年3月7日;工
甲公司欠银行贷款100万元无力归还。其母公司同意为甲公司归还,这一法律关系为()。
保险代理机构的业务范围是()
根据劳动合同法律制度的规定,下列各项中,属于用人单位可依据法定程序进行经济性裁员的情形有()。(2016年)
甲县东方红商店向乙县红旗电视机厂购买5000台电视机,合同约定履行地为丙县。后红旗电视机厂因生产能力不足未能按约交付5000台电视机,则东方红商店应向()提起诉讼。
在通货膨胀对策中,压缩财政支出属于()。
(2003年试题,四)设函数y=y(x)由参数方程所确定,求
最新回复
(
0
)