首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
已知四元齐次线性方程组(i)的解全是四元方程(ii)x1+x2+x3=0的解. (1)求a的值; (2)求齐次方程组(i)的通解; (3)求齐次方程(ii)的通解.
admin
2016-11-03
99
问题
已知四元齐次线性方程组(i)
的解全是四元方程(ii)x
1
+x
2
+x
3
=0的解.
(1)求a的值;
(2)求齐次方程组(i)的通解;
(3)求齐次方程(ii)的通解.
选项
答案
(1)因方程组(i)的解全是方程(ii)的解,故方程组(i)与方程组(iii) [*] 同解,且其系数矩阵 [*] 有相同的秩,因而a≠0.这是因为:如a=0,则r(A)=1,r(B)=2. 当a≠0时,易求得r(A)=3.这是因为A中有子行列式 [*] 对B进行初等行变换,得到 [*] 故当2a-1=即a=1/2时,r(B)=3.此时方程组(i)与方程组(iii)同解. (2)由A→[*]及基础解系的简便求法,即得方程组(i)的基础解系为 α=[一1/2,一1/2,1,1]
T
, 其通解为kα,k为任意实数. (3)注意到方程(ii)为四元方程,即x
1
+x
2
+x
3
+0x
4
=0.由 [*] 即可写出其基础解系为 β
1
=[一1,1,0,0]
T
, β
2
=[一1,0,1,0]
T
, β
3
=[0,0,0,1]
T
, 其通解为 k
1
β
1
+k
2
β
2
+k
3
β
3
, 其中k
1
,k
2
,k
3
为任意常数.
解析
由题设可作出与方程组(i)同解的方程组,即将方程组(i)与方程(ii)联立得方程组(iii).再利用同解的必要条件:方程组(i)与方程组(iii)的系数矩阵的秩必相等.由此确定a,再用基础解系的简便求法,即可分别求得方程组(i)与方程(ii)的基础解系,写出其通解.
转载请注明原文地址:https://www.kaotiyun.com/show/kHu4777K
0
考研数学一
相关试题推荐
a=-3/2
A、 B、 C、 D、 B
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
证明下列极限都为0;
设y=y(x)是函数方程ex+y=2+x+2y在点(1,-1)所确定的隐函数,求y〞|(1,-1)和d2y.
函数f(x)=展开成x的幂级数为___________.
微分方程满足y|x=1=1的特解为y=_________.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
(00年)曲面x2+2y2+3z2=21在点(1,一2,2)处的法线方程为________.
随机试题
某投资者在800美分的价位,卖出了20手大豆的空头合约,此时市场价格已经跌到780美分,空头合约如果现在平仓,则可以获利。但是投资者想要先锁定利润,他应该()。Ⅰ.买入看涨期权Ⅱ.卖出看涨期权Ⅲ.买入看跌期权Ⅳ.卖出看跌期权
快捷方式是一种特殊类型的文件,每个快捷方式都有自己独立的文件名。( )
Thetroublecalled______promptactionbythegovernment.
关于民事权利,下列哪一选项是正确的()
肝功能不全时,选用的营养液最好含有()
孙某与李某签订房屋租赁合同,李某承租后与陈某签订了转租合同,孙某表示同意。但是,孙某在与李某签订租赁合同之前,已经把该房租给了王某并已交付。李某、陈某、王某均要求继续租赁该房屋。下列哪一表述是正确的?(2014年卷三第14题)
_________是从事报关工作的资格证明。
洗钱者通过金融机构洗钱的技巧包括()
羊群效应,一般用以比喻人都有一种从众心理,很容易导致盲从,而盲从往往会陷人骗局或遭到失败。以下不属于羊群效应的是()。
国务院关于2012年度国家科学技术奖励的决定通知国发[2013]03号各省、自治区、直辖市人民政府,国务院各部委、各直属机构:为深入贯彻党
最新回复
(
0
)