首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由方程φ(bz-cy,cx-az,ay-bx)=0 (*) 确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1-aφ’2≠0,求
设由方程φ(bz-cy,cx-az,ay-bx)=0 (*) 确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’1-aφ’2≠0,求
admin
2019-02-20
63
问题
设由方程φ(bz-cy,cx-az,ay-bx)=0 (*)
确定隐函数z=z(x,y),其中φ对所有变量有连续偏导数,a,b,c为非零常数,且bφ’
1
-aφ’
2
≠0,求
选项
答案
【分析与求解一】 将方程(*)看成关于x,y的恒等式,两边分别对x,y求偏导数得 [*] 由①×a+②×b,可得 [*] 因此 [*] 【分析与求解二】 由一阶全微分形式不变性,对方程(*)两边求全微分得 φ’
1
·(bdz-cdy)+φ’
2
·(cdx-adz)+φ’
3
·(ady-bdx)=0, 即 (bφ’
1
-aφ’
2
)dz=(bφ’
3
-cφ’
2
)dx+(cφ’
1
-aφ’
3
)dy. ③ 于是[*] 【分析与求解三】 将方程(*)记为G(x,y,z)=0,代公式得 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/kHP4777K
0
考研数学三
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=
微分方程满足条件y(2)=0的特解是().
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设在区间(-∞,+∞)内f(x)>0,且当k为大于0的常数时有f(x+k)=,则在区间(-∞,+∞)内函数f(x)是()
设函数F(x)=则F(x)()
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
若函数f(x)在x=1处的导数存在,则极限=_______
设函数f(x)在x=0的某一邻域内具有二阶连续导数,且f(0)=0,fˊ(0)=0,证明绝对收敛.
随机试题
女,21岁,上切牙远中移位,间隙增宽,求治。检查:上切牙牙周探诊6mm,第一恒磨牙松动I度,牙周探诊6mm,X线片显示:上前牙区牙槽骨水平吸收,第一磨牙弧形吸收。诊断为
银行全面风险管理的核心包括()。
对于一般房地产投资项目,其偿债备付率不宜低于()。
下列关于公允价值模式计量的投资性房地产的表述中,不正确的有()。
2001年,安徽省的()被评为国家地质公园。
电路交换机按使用范围分为()。
根据以下资料。回答下列小题。2011年,我国网络游戏市场规模(包括互联网游戏和移动网游戏市场)为468.5亿元,同比增长34.4%。其中,互联网游戏为429.8亿元,同比增长33.0%;移动网游戏为38.7亿元,同比增长51.2%。2011年互联网游
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑.∑与平面z=0,z=2所围成的立体为Ω.求Ω的形心坐标.
定义栈的数据结构,要求添加一个min函数,能够得到栈的最小元素。要求函数min、push以及pop的时间复杂度都是O(1)。
PurposesofArtI.AvehicleforreligiousritualThe【T1】_____:primarypatronofartists【T1】______Traditionalsocietie
最新回复
(
0
)