首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试问a取何值时,该方程组有非零解,并求出其通解.
试问a取何值时,该方程组有非零解,并求出其通解.
admin
2019-03-21
86
问题
试问a取何值时,该方程组有非零解,并求出其通解.
选项
答案
[详解1] 对方程组的系数矩阵A作初等行变换,有 [*], 当a=0时,r(A)=1<4,故方程组有非零解,其同解方程组为 x
1
+x
2
+x
3
+x
4
=0. 由此得基础解系为 η
1
=(-1,1,0,0)
T
, η
2
=(-1,0,1,0)
T
, η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 x=k
1
η
1
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a≠0时, [*], 当a=-10时,r(A)=3<4,故方程组也有非零解,其同解方程组为 [*] 由此得基础解系为 η=(1,2,3,4)
T
, 所以所求方程组的通解为 x=kη,其中k为任意常数. [详解2] 方程组的系数行列式 [*] 当|A|=0,即a=0或a=-10时,方程组有非零解. 当a=0时,对系数矩阵A作初等行变换,有 [*] 故方程组的同解方程组为 x
1
+x
2
+x
3
+x
4
=0. 其基础解系为 η
1
=(-1,1,0,0)
T
, η
2
=(-1,0,1,0)
T
, η
3
=(-1,0,0,1)
T
, 于是所求方程组的通解为 x=k
1
η
1
+k
2
η
2
+k
3
η
3
,其中k
1
,k
2
,k
3
为任意常数. 当a=-10时,对A作初等行变换,有 [*] 故方程组的同解方程组为 [*] 其基础解系为η=(1,2,3,4)
T
, 所以所求方程组的通解为x=kη,其中k为任意常数.
解析
[分析] 此题为求含参数齐次线性方程组的解.由系数行列式为0确定参数的取值,进而求方程组的非零解.
[评注] 化增广矩阵为阶梯形时,只能施行初等行变换,这一点是值得注意的.
转载请注明原文地址:https://www.kaotiyun.com/show/kFV4777K
0
考研数学二
相关试题推荐
求下列旋转体的体积V:(Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体;(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
求无穷积分J=
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
设有微分方程y’-2y=φ(x),其中φ(x)=,试求:在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
求不定积分
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
在半径为a的半球内,内接一长方体,问各边长多少时,其体积最大?
(1999年)设矩阵矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵.求矩阵X.
随机试题
下肢肌肉运动时,节律性地压迫下肢静脉,其作用是()。
某水厂日处理水量为10×104m3,每小时投加氯气为18kg,求氯气的投加率为多少?(用mg/L表示。)
《中华人民共和国药品管理法》的适用范封是
2000年在某镇新诊断200例高血压患者,该镇年初人口数为9500人,年末人口数为10500人,在年初该镇有800名高血压患者,在这一年中有40人死于高血压,2000年该镇高血压
胡某因涉嫌盗窃罪被人民检察院依法提起公诉,下列有关判决的执行程序不符合刑事诉讼法相关规定的是:()
下列中小学建筑中的楼梯梯段宽度设计,错误的是()。
7,25,61,121,()
设程序中有以下语句:MsgBox"Visual",,"Basici","等级考试",2执行该语句后,显示一个信息框,以下关于该信息框的叙述中,正确的是()。
Whoisnotgoingonthemarketingcourse?
Innovation,theelixir(灵丹妙药)ofprogress,hasalwayscostpeopletheirjobs.IntheIndustrialRevolutionhandweaverswere【C1】
最新回复
(
0
)