首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2018-06-27
44
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0.考察F(x)=[f(t)dt]
2
-∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
π
f(t)dt]
2
-∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt-f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt-f
2
(x)同号.再考察 g’(x)=2f(x)[1-f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
-∫
0
1
f
3
(x)dx>0. 即结论成立.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jZk4777K
0
考研数学二
相关试题推荐
(I)设f(x),g(x)在(a,b)可微,g(x)≠0,存在常数C,使得f(x)=Cg(x)(x∈(a,b));
微分方程满足y(0)=一1的特解是_________.
下列二元函数在点(0,0)处可微的是
证明n阶矩阵相似.
设则f(x,y)在点O(0,0)处()
设D为曲线y=x3与直线y=x所围成的两块区域,计算
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[*]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2恒为1
某养殖厂饲养两种鱼,若甲种鱼放养x(万尾),乙种鱼放养y(万尾),收获时两种鱼的收获量分别为(3-αx-βy)x和(4-βx-2ay)y(α>β>0),求使得产鱼总量最大的放养数.
求曲线y=3-|x2-1|与x轴围成的封闭区域绕直线y=3旋转所得的旋转体的体积.
若xf"(x)+3x[f’(x)]2=1-ex且f’(0)=0,f"(x)在x=0连续,则下列正确的是
随机试题
A.MOPP疗案B.CHOP方案C.DA方案D.VP方案治疗非霍奇金淋巴瘤
A.口淡乏味B.口甜而粘腻C.口苦D.口中泛酸E.口中酸馊肝胃蕴热可见
A.抑制甲状腺激素生物合成B.首先抑制甲状腺激素释放,也抑制其合成C.抑制甲状腺激素生物合成,并阻抑外周组织T4转换成T3D.阻抑T4转换成T3E.破坏甲状腺腺泡上皮细胞及使甲状腺内淋巴细胞产生抗体减少放射性131I
某省下辖的一个县由于国外势力挑拨,一些武装分子发动分裂国家的武装行为,导致了严重的社会骚动,据我国宪法规定,下列哪一项说法正确?()
股份有限公司设监事会,其成员不少于()人。
按照功能来划分,期货投资基金行业中的参与者包括( )。
元认知的实质是人对认知活动的自我意识和()。
A.Foronething,manyyoung"vegetarians"continuetoeatthewhitemeatofdefenselesschickens(25%inthecurrentstudy)aswe
子过程Plus完成对当前库中"教师表"的年龄字段都加1的操作。SubPlus()DimcnAsNewADODB.ConnectionDimrsAsNewADODB.Recordset
Themosteffectiveattacksagainstglobalizationareusuallynotthoserelatedtoeconomies.Instead,theyaresocial,ethicala
最新回复
(
0
)