首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
设A∈Pn×n. (1)证明与A可交换的矩阵集合C(A)构成Pn×n的一个子空间. (2)当A=时,求C(A)的维数和一组基.
admin
2020-09-25
127
问题
设A∈P
n×n
.
(1)证明与A可交换的矩阵集合C(A)构成P
n×n
的一个子空间.
(2)当A=
时,求C(A)的维数和一组基.
选项
答案
(1)E
n
∈C(A),所以C(A)非空.设任意B,C∈C(A),则AB=BA,AC=CA,从而可得A(B+C)=AB+AC=BA+CA=(B+C)A,所以B+C∈C(A). 任取k∈R,则A(kB)=k(AB)=k(BA)=(ka)A,所以kB∈C(A).从而可得C(A)对于加法和数乘均封闭,所以C(A)是P
n×n
的一个子空间. (2)任意B∈C(A),则AB=BA,由矩阵运算可知B是对角矩阵;反之,任一对角矩阵B都与A可换,从而可得B∈C(A),所以C(A)是由对角矩阵组成的.所以 [*] 是C(A)的一组基,并且维数为n.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jWx4777K
0
考研数学三
相关试题推荐
微分方程+y=1的通解是_________.
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=________。
若β=(1,3,0)T不能由α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T线性表出,则a=______.
已知α1,α2,α3线性无关,α1+α2,aα2—α3,α1—α2+α3线性相关,则a=___________.
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
(87年)求矩阵A=的实特征值及对应的特征向量.
设α1,α2,α3均为线性方程组Ax=b的解,则下列向量中α1-α2,α1—2α2+α3,(α1-α3),α1+3α2—4α3是导出组Ax=0的解向量的个数为()
[2002年]假设一设备开机后无故障工作的时间X服从指数分布,平均无故障工作的时间(E(X))为5h.设备定时开机,出现故障时自动关机,而在无故障的情况下工作2h便关机.试求该设备开机无故障工作的时间Y的分布函数FY(y).
随机试题
白斑癌变率约为A.20%B.3%~5%C.1%D.10%~12%E.0.1%
下列关于睡眠影响因素的描述,正确的一项是
关于贫血MCV/RDW分类法,下列不正确的是
某村水塘上游有一家集体造纸厂。该厂已经经营近10年。污水一直排入水塘上游的河流。赵立国与余庆华合伙承包村里的水塘养虾。2016年5月,赵立国、余庆华二人向水塘投放虾苗2万尾。投放后赵、余二人精心管理,日夜看护。10天后,二人发现塘内有少量的死虾出现,当即捞
风险事件是指造成损失的偶发事件,是造成损失的外在原因或直接原因,下列属于风险事件的是()。
能够引起法律关系产生、变更和消灭的情况称为()。
在评估求助者解决问题的行为模式时,咨询员通常可以关注()。
在域名总数最多的报告中,宽带用户数约是手机网民人数的多少倍?()
以下有关优先级的比较,正确的是______。
Itisdifficulttoimaginewhatlifewouldbelikewithoutmemory.Themeaningsofthousandofeverydayperceptions,
最新回复
(
0
)