首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2000年] 设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):ATAX=0必有( ).
[2000年] 设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):ATAX=0必有( ).
admin
2019-05-10
45
问题
[2000年] 设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(Ⅰ):AX=0和(Ⅱ):A
T
AX=0必有( ).
选项
A、(Ⅱ)的解必是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.
C、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.
D、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.
答案
A
解析
本题的难点是在由A
T
AX=0得到A.这只有将A
T
AX=0化成只含AX的式子才好研究,为此在A
T
AX=0两边同时左乘X
T
.
解一 由命题2.4.7.3(1)知,仅(A)入选.
解二 设a为组(Ⅰ)的任一解,则Aα=0,于是有
A
T
Aα=A
T
(Aα)=A
T
0=0,
即α也是组(Ⅱ)的解.于是得到组(Ⅰ)的解必为组(Ⅱ)的解.
反之,设β为组(Ⅱ)的任一解.下面证明它也是组(Ⅰ)的解.由A
T
Aβ=0得到
β
T
(A
T
Aβ)=0,即
(Aβ)
T
(Aβ)=(β
T
A
T
)(Aβ)=β
T
(A
T
Aβ)=0.
设Aβ=[b
1
,b
2
,…,b
n
]
T
,则
(Aβ)T(Aβ)=b
1
2
+b
2
2
+…+b
n
2
=0
b
i
=0 (i=1,2,…,n),
即Aβ=0,亦即β为AX=0的解向量.
或用反证法证之.若Aβ=[b
1
,b
2
,…,b
n
]
T
≠0,不妨设b
1
≠0,则
(Aβ)
T
(Aβ)一[b
1
,b
2
,…,b
n
][b
1
,b
2
,…,b
n
]
T
=b
1
2
+
b
i
2
>0.
这与(Aβ)
T
(Aβ)=0矛盾.因而Aβ=0,于是组(Ⅱ)的解也必为组(I)的解.因而组(I)与组(II)同解.仅(A)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/jVV4777K
0
考研数学二
相关试题推荐
求曲线y=χ2-2χ、y=0、χ=1、χ=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
求不定积分
求不定积分
设函数y=y(χ)由2χy=χ+y确定,求dy|χ=0.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
设曲线y=lnχ与y=k相切,则公共切线为_______.
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f"’(x)|≤M3,其中M0,M3为非负常数,求证f"(x)在(0,+∞)上有界.
[2018年]下列函数中,在x=0处不可导的是().
随机试题
简述携程旅行网站的盈利模式。
维生素D缺乏性手足搐搦症的隐性体征是
依据《刑事诉讼法》的相关规定,下列有关死刑复核程序的说法中,不正确的是哪项?
受诉人民法院收到起诉状副本之日起七天内不能决定是否受理的,应如何处理?()
某投标人参加了某道路工程项目的国内招标采购活动,该项目招标文件中写明了投标截止时间为2014年7月8日上午10点。投标保证金提交的时间及方式为2014年7月8日上午10时前从投标人单位基本账户以电汇形式汇达招标人指定账户,投标保证金提交的金额为人民币80万
构件在外力作用下的变形形式有()。
根据支付结算法律制度的规定,下列存款人中,可以申请开立基本存款账户的有()。
刚刚能引起感觉的最小刺激量称为()。
下列语句中错误的是()。
Isitinthatfactory______"RedFlag"carsareproduced?
最新回复
(
0
)