首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
admin
2021-01-19
73
问题
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
选项
答案
旋转体的体积V=π∫
0
t
f
2
(x)dx, 侧面积S=2π∫
0
t
f(x)[*]dx, 由题设条件知 ∫
0
t
f
2
(x)dx=∫
0
t
f(x)[*]dx, 上式两端对t求导得f
2
(t)=f(t)[*] 即y’=[*] 由分离变量法解得ln(y+[*])=t+C
1
, 即y+[*]=Ce
t
。 将y(0)=1代入得C=1,故 y+[*]=e
t
,y=1/2(e
t
+e
-t
)。 于是所求函数为 y=f(x)=1/2(e
x
+e
-x
)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iq84777K
0
考研数学二
相关试题推荐
设z=z(x,y)有连续的二阶偏导数并满足(Ⅰ)作变量替换u=3x+y,v=x+y,以u,v作为新的自变量,变换上述方程;(Ⅱ)求满足上述方程的z(x,y).
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
求下列y(n):
验证函数f(x)=x3+x2在区间[-1,0]上满足罗尔定理.
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。求dz;
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
求下列平面曲线的弧长:(Ⅰ)曲线9y2=x(x-3)2(y≥0)位于x=0到x=3之间的一段;(Ⅱ)曲线=1(a>0,b>0,a≠b).
已知矩阵A=有3个线性无关的特征向量,λ=2是A的2重特征值.试求可逆矩阵P,使P-1AP成为对角矩阵.
随机试题
一例68岁慢性咳喘病患者气急,生活自理有困难,晨起大便时突然呼吸困难加重,送来急诊。体检重点应是
一下半口义齿,舌侧为铸造金属基托,唇颊侧为塑料基托连接,该义齿蜡型完成后,进行塑料成形基托塑料充填下述哪项是不正确的
放牧黄牛在采食时,受到蝇的干扰,表现强烈不安,踢蹴。后表现消瘦、生长缓慢,牛背部出现隆起。为进一步确诊该病,应采取的诊断方法是
下列各项中,属于会计从业资格证书管理内容的是()。
下列有关原材料核算的说法中,错误的是()。
下列情形中,可能会导致公司借款需求的有()。
坚持真理尺度和价值尺度的辩证统一,要求我们在实践中必须坚持和弘扬
数据库系统的核心是()。
Alloftheinternationaldelegatesattendingtheconference______tobringasouvenirfromtheirowncountries.
Whendemandbeginstorevive,asharpriseinpricesis______.
最新回复
(
0
)