首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a). 求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c); (2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)
admin
2018-04-18
54
问题
(1)设函数f(x),g(x)在[a,b]二上连续,在(a,b)内可导,且f(b)-f(a)=g(b)-g(a).
求证:(1)在(a,b)内至少有一点c,使fˊ(c)=gˊ(c);
(2)设a<c<b.f(x)和g(x)都在[a,b]上连续,在(a,b)内二阶可导,且f(a)=g(a),f(c)=g(c),f(b)=g(b),则在(a,b)内至少有一点ε,使f〞(ε)=g〞(ε);
(3)设f(x)在[0,4]上二阶可导,且f(0)=0,f(1)=1,f(4)=2,证明存在一点ε∈(0,4)使得f〞(ε)=-1/3.
选项
答案
证:(1)令F(x)=f(x)-g(x),显然F(x)在[a,b]上满足罗尔定理的条件,因此在(a,b)内至少存在一点c,使Fˊ(c)=0,即fˊ(c)=gˊ(c). (2)在[a,c]上考虑函数f(x)和g(x).则f(x)、g(x)满足(1)的结论的条件,所以,存在ε
1
∈(a,c),使得fˊ(ε
1
)=gˊ(ε
1
):同理存在点ε
2
∈(c,b),使得 fˊ(ε
2
)=gˊ(ε
2
). 记h(x)=fˊ(x),k(x)=gˊ(x),在[ε
1
,ε
2
]上考虑h(x),k(x),则h(x),k(x)满足(1)的结论的条件,所以,存在ε∈(ε
1
,ε
2
)∈(a,b),使得hˊ(ε)=kˊ(ε),即f〞(ε)=g〞(ε). (3)首先定义一个二次函数;y=g(x)=Ax
2
-Bx+C.使g(0)=0,g(1)=1,g(4)=2.得g(x)=-1/6x
2
+7/6x,这样,g(0)=f(0),g(1)=f(1),g(4)=f(4),根据(2)的结论,存在ε∈(0,4),使得f〞(ε)=g〞(ε),而g〞(ε)=-1/3,所以f(ε)=-1/3.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ikk4777K
0
考研数学二
相关试题推荐
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.
微分方程y〞一4y=x+2的通解为().
求微分方程xyˊ+y=xex满足y(1)=1的特解.
曲线y=lnx上与直线x+y=1垂直的切线方程为________.
当x=1,且(1)△x=1,(2)△x=0.1,(3)△x=0.01时,分别求出函数f(x)=x2-3x+5的改变量及微分,并加以比较,是否能得出结论:当△x愈小时,二者愈近似.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
(2011年试题,一)微分方程y’一λ2y=eλx+e-λx(λ>0)的特解形式为().
设函数.(1)求f(x)的最小值;(2)设数列{xn}满足,证明存在,并求此极限.
应填[*][分析]结合无穷小量等价代换和洛必塔法则进行计算即可.[详解]。
设讨论f(x)的连续性,若有间断点并指出间断点的类型;
随机试题
1.背景某建筑工程,建筑面积30000m2;地下2层,地上25层,筏板基础,钢筋混凝土剪力墙结构。建设单位依法选择了工程设计单位、工程监理单位、施工总承包单位,并签订了设计、监理、施工总承包合同。施工过程中,当地行政主管部门对其进行节能检查发现部分材料、
下列不易发生骨折不愈合的骨折类型是
在细菌之问直接传递DNA是通过
商业汇票的付款期限,最长不得超过()。
将下图沿虚线折叠,可折成缺失一个面的多面体外表面。则叠成的多面体缺失的外表面是:
你是铁路公安处的工作人员,有人在铁路两旁摆放烟花爆竹,故单位要你组织一次有关安全教育知识的宣传活动,你怎么组织?
根据我国国防动员法的有关规定,在国家的主权、统一、领土完整和安全遭受威胁时,决定全国总动员或局部动员和发布动员令的分别是:
下列有关数据库的描述,正确的是()。
表格式窗体同一时刻能显示______。
Wikipedia’sTrembling[A]Wikipediaisdying!Wikipediaisdying!That’sthelinerepeatedbythemediaeverysixmonthsorsosi
最新回复
(
0
)