首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有三个线性无关的解。 证明方程组系数矩阵A的秩r(A)=2;
admin
2018-04-12
85
问题
已知非齐次线性方程组
有三个线性无关的解。
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设α
1
,α
2
,α
3
是方程组Ax=β的三个线性无关的解,其中 [*] 则有A(α
1
一α
2
)=0,A(α
1
一α
3
)=0。 那么α
1
一α
2
,α
1
一α
3
是对应齐次线性方程组Ax=0的解,且线性无关(否则,易推出α
1
,α
2
,α
3
线性相关,矛盾)。 所以n一r(A)≥2,即4一r(A)≥2[*]r(A)≤2。又矩阵A中有一个2阶子式[*]=一1≠0,所以r(A)≥2。因此,r(A)=2。
解析
非齐次线性方程组有三个线性无关的解,可以得到齐次线性方程组有两个线性无关的解,由于基础解系中有4一r(A)个向量,由此可以得到r(A)≤2;接下来再证明r(A)≥2即可。
转载请注明原文地址:https://www.kaotiyun.com/show/iDk4777K
0
考研数学二
相关试题推荐
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设矩阵是矩阵A*的一个特征向量,A是α对应的特征值,其中A*是矩阵A的伴随矩阵.试求a,b和λ的值.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求方程f(x1,x2,x3)=0的解.
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
记行列式为f(x),则方程f(x)=0的根的个数为
随机试题
A、routeB、youthC、loseD、LonelyD画线部分读[eu],其他选项的画线部分读[u:]。
Therearesomepeoplewhowilluseanykindofargument,nomatterhowillogical,solongastheycan________anopponent.
如下哪项是瘿病的基本病理
据有关规定,张某必须在( )之前申请注册。张某的申请被批准后,于2007年10月20日取得注册证书和执业印章,1年后其注册证书和执业印章失效,张某可能发生的情形是( )。
下列关于退休规划说法正确的是()。
公司董事会通过利润分配方案中拟分配现金股利,不需进行账务处理,但应在报表附注中披露。()
下列说法不正确的是:
宏中的每个操作都有名称,用户______。
LangstonHughesandHisWork:InsideandOutI.GeneralIntroductionofLangstonHughes—Time;TheHarlemRenaissanceofthe192
ForanygiventaskinBritaintherearemorementhanwomenareneeded.StrongunionskeepthemthereinFleetStreet,homeofs
最新回复
(
0
)