首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示. 将β1,β2,β3用α1,α2,α3线性表示.
admin
2019-04-28
48
问题
[2011年] 设向量组α
1
=[1,0,1]
T
,α
2
=[0,1,1]
T
,α
3
=[1,3,5]
T
不能由向量组β
1
=[1,1,1]
T
,β
2
=[1,2,3]
T
,β
3
=[3,4,a]
T
线性表示.
将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
解一 由上题的解三知,当a=5时,经初等行变换得到 [*] 故 β
1
=2α
1
+4α
2
-α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
-2α
3
. 解二 设[β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]G.则 [*] 因而 [*] 即 β
1
=2α
1
+4α
2
-α
3
, β
2
=α
1
+2α
2
, β
3
=5α
1
+10α
2
-2α
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hzJ4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
没A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件是().
设X1,X2,…,Xn(n>2)为取自总体N(0,1)的简单随机样本,为样本均值,记Yi=Xi一,i=1,2,…,n。求:(Ⅰ)Yi的方差D(Yi),i=1,2,…,n;(Ⅱ)Yi与Yn的协方差Cov(Y1,Yn)。
已知二维随机变量(X,Y)的概率密度为(Ⅰ)试求(X,Y)的边缘概率密度fX(x),fY(y),并问X与Y是否独立;(Ⅱ)令Z=X—Y,求Z的分布函数FZ(y)(z)与概率密度fZ(y)(z)。
已知随机变量X服从参数为λ的指数分布,则P{X+Y=0}=________;P{Y≤}=________。
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
设f(x)在[0,2]上三阶连续可导,且f(0)=1,f’(1)=0,f(2)=.证明:存在ξ∈(0,2),使得f’’(ξ)=2.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
随机试题
_________标志着双方价格谈判的订正式开始,同时,也标志着双方的利益与要求在谈判桌上“亮相”。
以下哪项不见于急性心脏压塞
牙片
鼻咽癌好发于我国的以下地区
位于县城的某运输公司为增值税一般纳税人,具备国际运输资质,2016年6月经营业务如下:(1)国内运送旅客,按售票统计取得价税合计金额177.6万元;运送旅客至境外,按售票统计取得价税合计金额53.28万元。(2)运送货物,开具增值税专用发票注明运输收入
甲乙两辆车从A地驶往90公里外的B地,两车的速度比为5:6。甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达乙地。问两车的时速相差多少千米/小时?()
求下列积分:
求下列二重积分计算I=|sin(x-y)|dxdy,其中D:0≤x≤y≤2π;
在考生文件夹下的"samp1.mdb"数据库文件中已建立好表对象"tStud"和"tScore"、宏对象"mTest"和窗体"fTest"。请按以下要求,完成各种操作:(1)分析并设置表"tScore"的主键。(2)将学生"入校时间"字
Tomhadbeeninvitedtotheeveningpartybut______onthegroundsthathewastoobusy.
最新回复
(
0
)