首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
Surface Fluids on Venus and Earth P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shr
Surface Fluids on Venus and Earth P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shr
admin
2018-10-18
82
问题
Surface Fluids on Venus and Earth
P1: When astronomers first pointed their rudimentary telescopes at Venus, they saw a world shrouded in clouds. Here on Earth, clouds mean water, so early astronomers imagined a tropical world with constant rainfall. The truth, of course, is that the hydrological state on Venus is quite different from that of Earth. The hydrologic cycle describes the continuous movement of liquid above, on, and below the surface of a planet. These movements derive their energy from the Sun and the gravitational forces of the planet itself, and in turn redistribute energy around the globe through atmospheric circulation. As fluids interact with surface materials, water molecules move particles repeatedly through solid, liquid, and gaseous phases or react chemically with them to modify and produce materials. On a solid planet with a hydrosphere and an atmosphere, only a tiny fraction of the planetary mass flows as surface fluids. Yet, the movements of these fluids can drastically alter a planet.
P2: Imagine Venus a long time ago. The planet is nearly identical to the Earth in size, mass, composition and distance from the Sun. However, it lacks any sign of a hydrologic system—there are no streams, lakes, oceans, or glaciers. It begins like the Earth with global oceans, carbon dioxide dissolved in the oceans, and carbonate rocks forming at the bottoms of the oceans. But because Venus is just a tiny bit smaller than the Earth, it has less radioactive heat sources inside. Thus, at some time in the distant past, perhaps only 500 million to 1 billion years ago, Venus may have run out of enough internal heat to continue to drive the tectonic activity. Alternatively, because Venus is a little closer to the Sun, we would expect that the original temperature of Venus should have been a little warmer than that of the early Earth. The slightly elevated temperature puts a bit more water in the oceans and atmosphere and a bit less in the rocks. This makes the rocks harder since water serves as a lubricant for the plate tectonic process. Either way, tectonic activity begins to slow down. Because Venus receives more heat from the Sun, water released from the interior evaporated and rose to the upper atmosphere, where the Sun’s ultraviolet rays broke the molecules apart. Much of the freed hydrogen escaped into space, and Venus lost its water. Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide. On Earth, liquid water removes carbon dioxide from the atmosphere and combines it with calcium, through rock weathering, to form carbonate sedimentary rocks. Without liquid water to remove carbon from the atmosphere, prohibiting the formation of carbonate minerals, the level of carbon dioxide in the atmosphere of Venus remains high.
P3: Like Venus, Earth is large enough to be geologically active and for its gravitational field to hold an atmosphere. But fortunately, being further away, it has less heating from the sun and allows water to exist as a liquid, a solid, and a gas. Water is thus extremely mobile and moves rapidly over the planet in a continuous hydrologic cycle. Driven by energy from the sun, water is constantly being cycled from the ocean, through the atmosphere, and ultimately back to the oceans. As a result, Earth’s surface has been continually changed and eroded into delicate systems of river valleys—a remarkable contrast to the surfaces of other planetary bodies where impact craters dominate. Other geologic changes occur when the gases in the atmosphere or water react with rocks at the surface to form new chemical components with different properties. Weathering breaks down rocks into gravel, sand, and sediment, and is an important source of key nutrients such as calcium and sulfur. Estimates indicate that, on average, Earth’s surface weathers at a rate of about 0.5 millimeter per year. Actual rates may be much higher at specific locations and may have been accelerated by human activities. However, none of these would have happened if our planet had spun a little further from or nearer to the sun. Because liquid water was present, self-replicating molecules of carbon, hydrogen, and oxygen developed life early in Earth’s history and have rapidly modified its surface, blanketing huge parts of the continents with greenery.
P2: Imagine Venus a long time ago. The planet is nearly identical to the Earth in size, mass, composition and distance from the Sun. ■ However, it lacks any sign of a hydrologic system—there are no streams, lakes, oceans, or glaciers.■ It begins like the Earth with global oceans, carbon dioxide dissolved in the oceans, and carbonate rocks forming at the bottoms of the oceans. ■But because Venus is just a tiny bit smaller than the Earth, it has less radioactive heat sources inside. Thus, at some time in the distant past, perhaps only 500 million to 1 billion years ago, Venus may have run out of enough internal heat to continue to drive the tectonic activity. Alternatively, because Venus is a little closer to the Sun, we would expect that the original temperature of Venus should have been a little warmer than that of the early Earth. The slightly elevated temperature puts a bit more water in the oceans and atmosphere and a bit less in the rocks. This makes the rocks harder since water serves as a lubricant for the plate tectonic process. Either way, tectonic activity begins to slow down. Because Venus receives more heat from the Sun, water released from the interior evaporated and rose to the upper atmosphere, where the Sun’s ultraviolet rays broke the molecules apart. ■ Much of the freed hydrogen escaped into space, and Venus lost its water. Without water, Venus became less and less like Earth and kept an atmosphere filled with carbon dioxide. On Earth, liquid water removes carbon dioxide from the atmosphere and combines it with calcium, through rock weathering, to form carbonate sedimentary rocks. Without liquid water to remove carbon from the atmosphere, prohibiting the formation of carbonate minerals, the level of carbon dioxide in the atmosphere of Venus remains high.
According to paragraph 3, why is water able to move so freely on Earth?
选项
A、Earth’s temperatures are such that water exists in solid, liquid, and gas forms.
B、Earth is large enough to be geologically active and for its gravitational field to hold an atmosphere.
C、Earth’s surface allows river valleys to develop across the landscape.
D、Earth has active winds that blow across seas and oceans, causing fluid movements.
答案
A
解析
【推断题】第3句提到“Water is thus extremely mobile and moves rapidly over the planet”,此句是结果,说明第2句是原因,答案为A。
转载请注明原文地址:https://www.kaotiyun.com/show/hwfO777K
0
托福(TOEFL)
相关试题推荐
Completethesentencesbelow.WriteNOMORETHANTHREEWORDSforeachanswer.Rickyhaspointedoutthatasidefromjournals,h
Completethesentencesbelow.WriteONEWORDAND/ORANUMBERforeachanswer.Thestudentscan______theirtopicsbeforethebeg
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
ChooseTWOletters,A-E.WhichTWOsubjectsdidMartinalikebestbeforegoingtouniversity?AArtBHistoryCFrenchDEnglish
Whothinksthefollowing?AKatyaBPeterCbothKatyaandPeterTheInternetcreatesnewgapsbetweenrichandpoor.
BeforeyoulistenLookatthetaskbelow.Trytoworkoutthesituationfromthetask.Whataretheytalkingabout?Whyarethey
(When)precipitationoccurs,(some)ofitevaporates,somerunsoff(the)surfaceitstrikes,andsome(sinking)intotheground
AstronomyWhatdideighteenth-centuryastronomershaveincommonwithastronomerstoday?
随机试题
Mrs.Janesgavemusiclessonsat.aschool.Shehadagoodvoiceandenjoyedsinging,exceptthatsomeofherhightonessoundedlik
同一层次的经销商多,则称为宽渠道,经销商越多,渠道越宽。宽渠道会增加渠道的辐射能力,但品牌塑造能力减弱。()
行政组织行为的特征有:()、()、()、()。
关于急性胆囊炎的临床特点的描述错误的是()。
为预防高发的家鼠型疫区人群流行性出血热,对16~60岁人群采用抗汉坦型汉坦病毒地鼠肾细胞灭活疫苗,在接种人群中发现2例寻麻疹,6例全臂水肿。对此反应者应采取的措施是
外阴肿胀,外阴脓肿切开,可用阴疮,阴痒,阴痛,可用
道德评价的标准()
一新生儿于生后24小时内出现黄疸,最恰当的处理是
A、十二烷基苯磺酸钠B、卵磷脂C、HLB7~9D、苯扎氯铵E、PluronicF68非离子型表面活性剂为()。
教师道德范畴,从广义上讲,是指反映和概括有关教师道德现象的特征、方面和关系的各种基本概念。不但教师道德原则和规范所包含的基本概念可以看作教师道德范畴,就是反映教师个体道德行为和道德品质,以及道德评价、道德修养和道德教育等方面的概念,也可以看作教师道德范畴。
最新回复
(
0
)