首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设A是m×n矩阵.证明: r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
admin
2020-03-10
62
问题
设A是m×n矩阵.证明: r(A)=1
存在m维和n维非零列向量α和β,使得A=αβ
T
.
选项
答案
“[*]”记A的列向量组为α
1
,α
2
,…,α
n
,则因为r(A)=1,所以r(α
1
,α
2
,…,α
n
)=1.于是A一定有非零列向量,记α为一个非零列向量,则每个α
i
都是α的倍数.设α
i
=b
i
α,i=1,2,…,n.记β=(b
1
,b
2
,…,b
n
)
T
,则β≠0,并且A=(α
1
,α
2
,…,α
n
)=(b
1
α,b
2
α,…,b
n
α)=αβ
T
. “[*]”设A=αβ
T
,则r(A)≤r(α)=1.由于α,β都不是零向量,可设α的第i个分量a
i
≠0,β的第j个分量b
j
≠0.则A的(i,j)位元素为a
i
b
j
≠0,因此A≠0,从而r(A)>0.得r(A)=1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hwD4777K
0
考研数学三
相关试题推荐
设f(x)在[0,1]上具有连续导数,且f(0)+f(1)=0。证明
设f(x)在[0,π]上连续,且,证明f(x)在(0,π)内至少有两个零点。
设f(x)在[-e,e]上连续,在x=0处可导,且f’(0)≠0。(Ⅰ)证明对于任意x∈(0,e),至少存在一个θ∈(0,1),使得(Ⅱ)求极限。
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设α,β均为三维列向量,β是βT的转置矩阵,如果αβT=,则αTβ=___________。
设A为m×n矩阵,B为n×m矩阵,若AB=E,则()
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=0,则()
随机试题
甲股份有限公司(简称甲公司)2010年在上海证券交易所上市,控股股东为丙公司,乙集团有限公司(简称乙公司)持有丙公司100%的股权。因2011年、2012年、2013年连续3年亏损,甲公司股票已暂停上市。2015年2月17日,收购人乙公司公告《要约收购报
A.易伴发肺脓肿B.首选氨基糖苷类抗生素治疗C.两者均有D.两者均无金黄色葡萄球菌肺炎
产前检查应1周1次抽羊水作染色体检查
A.清晨B.餐前C.餐中D.餐后E.睡前比沙可啶片的适宜服药时间是()。
财政收支出现差额带来的成本和效益,最终仍要落到社会成员的身上,从而要求政府财政收支行为必须以()为基础。
下列地段中,雨期可进行施工的有()。
根据《民法典》的规定,下列权利凭证中,可以用于质押的是()。
下列有关收入确认原则的表述中,正确的有()。
以下关于服务目录的说法中,不正确的是()。
SunlightisagreatsourceofvitaminDinmostoftheworld.Yeta(an)【C1】______numberofexpertsthinkthatmanypeoplearen’
最新回复
(
0
)