首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2016-09-13
98
问题
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
当a=0时,等号成立;当a>0时,由于f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以,存在ξ
1
∈(0,a),ξ
2
∈(b,a+b),ξ
1
<ξ
2
,使得 [f(a+b)-f(b)]-[f(a)-f(0)]=afˊ(ξ
2
)-afˊ(ξ
1
). 因为fˊ(x)在(0,c)内单调减少,所以fˊ(ξ
2
)≤fˊ(ξ
1
),于是, [f(a+b)-f(b)]-[f(a)-f(0)]≤0, 即f(a+b)≤f(a)+f(b). 于是有F(b)≤F(0)=0,即f(a+b)-f(b)-f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hPT4777K
0
考研数学三
相关试题推荐
建设现代化经济体系是党中央从党和国家事业全局出发,着眼于实现“两个一百年”奋斗目标、顺应中国特色社会主义进入新时代的新要求作出的重大决策部署,既是一个重大理论命题,又是一个重大实践课题。因为形成现代化经济体系()。
1930年5月毛泽东为反对当时中国工农红军中的教条主义思想而写的关于调查研究问题的重要著作,同时也是毛泽东最早的一篇马克思主义的哲学著作是()。
在中国新民主主义革命中,实现无产阶级领导权的核心问题是()。
大学生要在尊重法律权威方面加强砥砺,在学习和生活中积极作为,养成敬畏法律的良好品质,努力成为尊重法律权威、信仰法律的先锋。尊重和维护法律权威的要求之一是服从法律,下面属于服从法律的表现有()。
证明[*]
求下列函数的极值:(1)f(x,y)=6(x-x2)(4y-y2);(2)f(x,y)=e2x(x+y2+2y);(4)f(x,y)=3x2y+y3-3x2-3y2+
设u(x,y,z),v(x,y,z)是两个定义在闭区域Ω上的具有二阶连续偏导数的函数,依次表示u(x,y,z),v(x,y,z)沿∑的外法线方向的方向导数.证明:其中∑是空间闭区域Ω的整个边界曲面.
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P{丨X+Y丨≥6}≤___________.
随机试题
“教育管理多中心”和“________”是联邦德国现行教育管理的指导思想。()
碘剂治疗甲亢用于
背景:某学校食堂工程,建筑面积7000m2,框架结构,地上3层,外装饰为玻璃幕墙和石材,楼层之间安装有自动扶梯,在验收过程中发生了以下事件:事件一:幕墙分包工程施工完成,内部自行组织了检查,为整体工程验收创造条件。事件二:工程竣工验收时,总包单位将自
机器设备按功能分类具体可划分为( )。
外币交易应当在初始确认时,采用交易发生日的即期汇率或交易发生当期的期初汇率将外币金额折算为记账本位币金额。()
A公司与B公司签订一份总价为200万元的买卖合同,并约定由B公司先行支付50万元的定金。当事人对该定金数额的约定是符合法律规定的。( )
在下列常用文件组织方式中,______对文件大小没有限制,______随机查找速度最快,______顺序查找速度最快,______适用于活动率高的场合,对软件的要求高。
下面所列的条目中:Ⅰ.语法检查Ⅱ.语义检查Ⅲ.用户存取权限检查Ⅳ.数据完整性检查当用户发出查询数据库数据的命令时,数据库管理系统需要进行的检查是______。
假定MyClass为一个类,则该类的拷贝构造函数的声明语句为()。
Itcanbehardtoliveuptoone’s______.
最新回复
(
0
)