首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的密度函数为f(x;θ)=,-∞<x<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。 求θ的极大似然估计量,并问是否为θ的无偏估计?
设总体X的密度函数为f(x;θ)=,-∞<x<+∞,其中θ(θ>0)是未知参数,(X1,X2,…,Xn)为来自总体X的一个简单随机样本。 求θ的极大似然估计量,并问是否为θ的无偏估计?
admin
2019-12-24
71
问题
设总体X的密度函数为f(x;θ)=
,-∞<x<+∞,其中θ(θ>0)是未知参数,(X
1
,X
2
,…,X
n
)为来自总体X的一个简单随机样本。
求θ的极大似然估计量
,并问
是否为θ的无偏估计?
选项
答案
设样本X
1
,X
2
,…,X
n
的取值为x
1
,x
2
,…,x
n
,则对应的似然函数为 L(x
1
,x
2
,…,x
n
;θ)=[*] 取对数得[*] 关于θ求导得[*] 令[*],得θ的极大似然估计量[*],因为 [*] 所以[*],即[*]是θ的无偏估计。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gmD4777K
0
考研数学三
相关试题推荐
一条自动生产线连续生产n件产品不出故障的概率为n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立.(I)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;(Ⅱ)若已知在某两次故障间该生产线生产了
抛掷两枚骰子,在第一枚骰子出现的点数能够被3整除的条件下,求两枚骰子出现的点数之和大于8的概率.
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为λ的指数分布.(I)求第三辆车C在加油站等待加油时间T的概率密度;(Ⅱ)求
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0},
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数.
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
设A是一个可逆实对称矩阵,记Aij是它的代数余子式.二次型f(x1,x2,…,xn)=(1)用矩阵乘积的形式写出此二次型.(2)f(x1,x2,…,xn)的规范形和XTAX的规范形是否相同?为什么?
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T.试讨论当a,b为何值时,(1)β不能用α1,α2,α3线性表示;(2)β能用α1,α2,α3唯一地线性表示,求表示式
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
设(I)和(Ⅱ)都是3元非齐次线性方程组,(I)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1,),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(I)和(Ⅱ)的公共解.
随机试题
注水井在射孔投注前,必须对套管进行试压,标准是:压力为15MPa,稳定30min压力下降小于()MPa。
Word2010中文档文件的默认扩展名是()。
发现医院感染散发病例时,报告医院感染管理科的时间是
操作非密封放射源的放射工作人员,当摄入量可能超过年摄入量限值的多少时,应进行内照射个人摄入量监测
A.构音训练B.冷刺激C.舌部运动训练D.下颌运动训练E.口唇闭合训练改善食物或水从口中漏出的训练是
当急性胰腺炎累及全胰腺时,临床表现的特点是()
有关序数效用理论对消费者偏好的假定,错误的有()。
对房屋设备应做到“三好”、“四会”、“五定”。其中“三好”是指()。
邓小平关于社会主义市场经济理论的内涵包括
逢到和旧友谈话,就不知不觉地把话题转到旧事上去,这是我的习惯。我在这上面无意识地会感到一种温暖的慰藉。可是这些旧友一年比一年减少了,本来只是屈指可数的几个,少去一个是无法弥补的。我每当听到一个旧友死去的消息,总要惆怅多时。学校教育给我们的好处不但
最新回复
(
0
)