首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有 其中Ω(f)={(x,y,z)|x2+y2+z2≤t2),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫0t
admin
2018-09-25
85
问题
设函数f(x)在[0,+∞)上连续,若对任意的t∈(0,+∞)恒有
其中Ω(f)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
),D(t)是Ω(t)在xOy平面上的投影区域,∑(t)是球域Ω(t)的表面,L(t)是D(t)的边界曲线.证明:f(x)满足∫
0
t
r
2
f(r)dr+tf(r)=2t
4
,且f(0)=0.
选项
答案
D(t)={(x,y)|x
2
+y
2
≤t
2
},∑(t)={(x,y,z)|x
2
+y
2
+z
2
=t
2
},L(t)={(x,y)|x
2
+y
2
=t
2
},且 [*] =∫
0
2π
dθ∫
0
π
sinφdφ∫
0
t
r
2
f(r)dr=4π∫
0
t
r
2
f(r)dr, [*] =∫
0
2π
dθ∫
0
t
r
2
f(r)dr=2π∫
0
t
r
2
f(r)dr, [*] 由题设条件,有 47π∫
0
t
r
2
f(r)dr+2πtf(t)=2π∫
0
t
r
2
f(r)dr+4πt
4
, 即 ∫
0
t
r
2
f(r)dr+tf(f)=2t
4
. 又t≠0,则 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gcg4777K
0
考研数学一
相关试题推荐
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
求以曲线Г:为准线,{l,m,n}为母线方向的柱面方程.
经过两个平面∏1:x+y+1=0,∏2:x+2y+2z=0的交线,并且与平面∏3:2x-y-z=0垂直的平面方程是__________.
两个平行平面∏1:2x-y-3z+2=0,∏2:2x-y-3z-5=0之间的距离是___________.
I=,其中A(0,-1),B(1,0),为单位圆在第四象限部分.
设r=(x,y,z),r=|r|,r≠0时f(r)有连续的导数,求下列各量:(Ⅰ)rot[f(r)r];(Ⅱ)divgradf(r)(r≠0时f(r)有二阶连续导数).
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,X(n)=max(X1,…,Xn).(Ⅰ)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使=bX(n)均为θ的无偏估计,并比较其有效性;(Ⅲ)应用切比雪夫不
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
随机试题
焊接电弧是由()组成的。
下列选项中,属于公共政策直接主体的是()
求方程y"一y’一2y=0的通解.
第二代造影剂(以意大利BRACCO公司的SonoVue声诺维为例)微泡的直径平均为
影响管理跨度的主要因素有授权程度、()和工作性质等。
甲公司属于增值税一般纳税企业,以人民币作为记账本位币,采用交易发生日的即期汇率将外币金额折算为记账本位币,年末一次计算汇兑差额。2017年甲公司发生如下业务:资料一:2017年1月1日,以外币存款1000万美元购入按年付息的美元债券,面值为1000
企业文化是指企业在生产经营实践中逐步形成的、为整体团队所认同并遵守的价值观、经营理念和企业精神,以及在此基础上形成的行为规范的总称。企业在建设文化环境时可考虑的内容包括()。
60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
等张收缩时肌肉张力不变。()
America,unhappily,isbullishongarbage.Ourproductionofrefuse,nowabout160milliontonsayear,willriseto193million
最新回复
(
0
)