首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 设二次型 f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3 (b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正
[2003年] 设二次型 f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3 (b>0), 其中二次型的矩阵A的特征值之和为1,特征值之积为-12. 利用正交变换将二次型f化为标准形,并写出所用的正
admin
2019-06-25
80
问题
[2003年] 设二次型
f(x
2
,x
2
,x
3
)=X
T
AX=ax
1
2
+2x
2
2
-2x
3
2
+2bx
1
x
3
(b>0),
其中二次型的矩阵A的特征值之和为1,特征值之积为-12.
利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
选项
答案
解一 由矩阵A的特征多项式[*] 解得A的特征值λ
1
=λ
2
=2,λ
3
=-3. 对于特征值λ
1
=λ
2
=2,解方程组(2E-A)X=0.因 [*] 可得两个线性无关且相互正交的特征向量为ξ
1
=[2,0,1]
T
,ξ
2
=[0,1,0]
T
. 对于特征值λ
3
=-3,易求得特征向量为ξ
3
=[1,0,-2]
T
. 由于ξ
1
,ξ
2
,ξ
3
已是正交向量组,只需将其单位化,得 [*] 取矩阵[*]则Q为正交矩阵.在正交变换X=QY下,有[*]且二次型的标准形为f=2y
1
2
+2y
2
2
-3y
3
2
. 解二 由上题可得A的特征值为λ
1
=λ
2
=2,λ
3
=-3.下同解一(略).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gTJ4777K
0
考研数学三
相关试题推荐
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:第三次才取得次品;
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
有16件产品,12个一等品,4个二等品.从中任取3个,至少有1个是一等品的概率为____________.
设A,B为两个随机事件,且P(A)=0.7,P(A—B)=0.3,则
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g′(x)<0,试证明存在ξ∈(a,b)使
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设α,β为四维非零列向量,且α⊥β,令A=αβT,则A的线性无关特征向量个数为().
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设总体X的密度函数为求参数θ的矩估计量和最大似然估计量.
(2007年)设总体X的概率密度为其中参数θ(0<θ<1)未知,X1,X2,…,Xn,是来自总体X的简单随机样本,是样本均值。(Ⅰ)求参数θ的矩估计量;(Ⅱ)判断是否为θ2的无偏估计量,并说明理由。
随机试题
简述律师事务所被取消会员资格的情形。
在改革开放具体政策措施上之所以不能陷入姓“资”还是姓“社”的抽象争论,是因为()。
以( )为标的合同,其数量主要表现为智力成果的价值。
下列不属于制定执业质量制度应遵循原则的是()。
某煤矿企业为了赶进度,违反安全生产程序进行超量挖掘,这种行为不符合安全生产的()要求。
国务院证券监督管理机构依照法定条件负责核准股票发行申请,下列有关核准程序的说法正确的是()。
班主任崔老师想要了解本班学生所有学科的学习情况,负责安排此项工作的学校职能部门是()。
设f(x)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f’(ξ)=一f(ξ)cotξ.
Thehours______thechildrenspendintheirone-wayrelationshipwithtelevisionpeople,undoubtedlyaffecttheirrelationships
WhenwasMargaretThatcherborn?MargaretThatcherwasborn__________.
最新回复
(
0
)