首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足 ( )
设A是3阶实对称矩阵,λ1,λ2,λ3是A的三个特征值,且满足a≥λ1≥λ2≥λ3≥6,若A~μE是正定阵,则参数μ应满足 ( )
admin
2016-05-03
90
问题
设A是3阶实对称矩阵,λ
1
,λ
2
,λ
3
是A的三个特征值,且满足a≥λ
1
≥λ
2
≥λ
3
≥6,若A~μE是正定阵,则参数μ应满足 ( )
选项
A、μ>b.
B、μ<b.
C、μ>a.
D、μ<a.
答案
B
解析
A一μE的特征值为λ
1
一μ,λ
2
一μ,λ
3
—μ,且满足
a—μ≥λ
1
一μ≥λ
2
一μ≥λ
3
一μ≥b一μ.
当b一μ>0即μ<b时,A一μE的全部特征值大于等于正值,故A一μE是正定矩阵,应选(B).
(A)中μ>b,即b一μ<0,A一μE的全部特征值大于等于负值,不能确定A一μE的正定性.
(C)中μ>a,即a一μ<0,A一μE的全部特征值小于等于负值,A一μE是负定矩阵.
(D)中μ<a,即a一μ>0,A一μE的全部特征值小于等于正值,不能确定A一μE的正定性.
转载请注明原文地址:https://www.kaotiyun.com/show/fmT4777K
0
考研数学三
相关试题推荐
国家治理体系和治理能力是一个国家的制度和制度执行能力的集中体现,两者相辅相成,这表现为()。
中共中央政治局常务委员会2020年4月8日召开会议。会议指出,当前我国经济发展面临的困难加大。各级党委和政府要增强紧迫感,因地制宜、因时制宜优化完善疫情防控举措,千方百计创造有利于复工复产的条件,不失时机畅通产业循环、市场循环、经济社会循环。其中产业资本保
价值形式发展的完成形式是()。
这次疫情,对产业发展既是挑战也是机遇,一些传统行业受冲击较大,而智能制造、无人配送、在线消费、医疗健康等新兴产业展现出强大成长潜力,网络购物、生鲜电商、在线教育、远程问诊、远程办公等新兴服务业态快速扩张,一些技术含量高的产品产量也逆势增长。这里当然有需求拉
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
一个均匀的四面体,其第一面染红色,第二面染白色,第三面染黑色,而第四面染红、白、黑三种颜色,以A、B、C分别记投掷一次四面体,底面出现红、白、黑的三个事件,判断A、B、C是否两两独立,是否相互独立.
某城有N辆车,车牌号从1到N,某观察员在某地把所遇到的n辆车的牌号抄下(可能重复抄到车牌号),问为抄到最大号码正好k的概率(1≤k≤N)是多少?
设一柱体的底部是xOy,面上的有界闭区域D,母线平行于x轴,柱体的上顶为一平面,证明:柱体的体积等于D的面积与上顶平面上对应于D的形心的点的竖坐标的乘积.
设z=z(x,y)是由方程x2+y2-z=φ(x+Y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.(I)记
设f(x)为[0,1]上的单调增加的连续函数,证明
随机试题
设y=x2+ex,则dy=________.
根据招投标相关法律和司法解释,下列施工合同中,属于无效合同的有()。
期货投资者保障基金的筹集、管理和使用的具体办法,由国务院期货监督管理机构会同()制定。
股东大会作出特别决议,应当由出席会议的股东所持表决权的()以上通过。
公积金个人住房贷款与自营性个人住房贷款的区别有()。
如果正常照明因故中断,供继续工作和人员疏散的照明称为()。
量尺:厘米
中华民族精神是中华民族生生不息、发展壮大的强大精神动力,必须加以培育和弘扬。培育和弘扬民族精神
AboutTrainTickets1.WhatisatrainticketA【T1】______validforasinglejourneyTherearetwotypesoftrainticketsinEur
TherewasonceamaninSouthAmericawhohada【B1】______,apetbirdthatcould【B2】_____humanspeech.Theparrotwas【B3】______.
最新回复
(
0
)