首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则( )正确.
admin
2018-06-27
102
问题
设A是4×5矩阵,α
1
,α
2
,α
3
,α
4
,α
5
是A的列向量组,r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则( )正确.
选项
A、A的任何3个行向量都线性无关.
B、α
1
,α
2
,α
3
,α
4
,α
5
的一个含有3个向量的部分组(Ⅰ)如果与α
1
,α
2
,α
3
,α
4
,α
5
等价,则一定是α
1
,α
2
,α
3
,α
4
,α
5
的最大无关组.
C、A的3阶子式都不为0.
D、α
1
,α
2
,α
3
,α
4
,α
5
的线性相关的部分组含有向量个数一定大于3.
答案
B
解析
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,说明α
1
,α
2
,α
3
,α
4
,α
5
的一个部分组如果包含向量超过3个就一定相关,但是相关不一定包含向量超过3个.(D)不对.
r(α
1
,α
2
,α
3
,α
4
,α
5
)=3,则A的行向量组的秩也是3,因此存在3个行向量线性无关,但是不是任何3个行向量都线性无关.排除(A).
A的秩也是3,因此有3阶非零子式,但是并非每个3阶子式都不为0,(C)也不对.
下面说明(B)对.(Ⅰ)与α
1
,α
2
,α
3
,α
4
,α
5
等价,则(I)的秩=r(α
1
,α
2
,α
3
,α
4
,α
5
)=3=(Ⅰ)
中向量的个数,于是(Ⅰ)线性无关,由定义(Ⅰ)是最大无关组.
转载请注明原文地址:https://www.kaotiyun.com/show/dik4777K
0
考研数学二
相关试题推荐
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
设xOy平面第一象限中有曲线F:y=y(x),过点y’(x)>0.M(x,y)为F上任意一点,满足:弧段的长度与点M处厂的切线在x轴上的截距之差为求曲线F的表达式.
微分方程yy’’一(y’)2=0满足y(0)=1与y’(0)=1的特解是_________.
已知三元二次型xTAx的平方项系数均为Ω设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设抛物线y=χ2与它的两条相互垂直的切线所围成的平面图形的面积为S,其中一条切线与抛物线相切于点A((a,a2)(a>0).(1)求S=S(a)的表达式;(Ⅱ)当a取何值时,面积S(a)最小?
设,求f(x)的间断点并指出其类型.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x一1)2+y2=1围成的立体的体积最小,并求出最小体积.
(1990年)过P(1,0)作抛物线y=的切线,该切线与上述抛物线及χ轴围成一平面图形.求此平面图形绕χ轴旋转一周所成旋转体的体积.
随机试题
开口扳手包括()。
两个排放相同污染物(不论其是否由同一生产工艺过程产生)的排气筒,若其距离()其几何高度之和,应合并视为一根等效排气筒。
下列关于非代理型CM模式的表述中,正确的有()
下列有关白酒计税价格的核定,说法不正确的有()。
目前,唯一没有资本金的中央银行是()。
(2012年真题)根据我国著作权法,下列行为中可以不经著作权人许可的有()。
在中国,乐山大佛与云冈、龙门、敦煌共称为中国四大佛教石刻。()
Thesceneryonthewaywastrulyspectacular,withbeautifulmountains,riversandvalleys,andItookalotofpicturesfromth
简述问题解决的基本过程。
[2008年10月]张三以卧姿射击10次,命中靶子7次的概率是。(1)张三以卧姿打靶的命中率是0.2;(2)张三以卧姿打靶的命中率是0.5。
最新回复
(
0
)