首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P-1AP为对角矩阵.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2019-12-26
10
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
【解法1】对应于λ
1
=λ
2
=1,解齐次线性方程组(E-B)x=0,得基础解系 ξ
1
=(-1,1,0)
T
,ξ
2
=(-2,0,1)
T
; 对应于λ
3
=4,解齐次线性方程组(4E-B)x=0,得基础解系 ξ
3
=(0,1,1)
T
. 令矩阵 [*] 则 [*] 因Q
-1
BQ=Q
-1
C
-1
ACQ=(CQ)
-1
A(CQ),记矩阵 [*] 故P即为所求的可逆矩阵. 【解法2】由题设,有 A(α
1
-α
2
)=α
1
-α
2
,A(2α
1
-α
3
)=2α
1
-α
3
,A(α
2
+α
3
)=4(α
2
+α
3
), 从而α
1
-α
2
,2α
1
-α
3
是A的属于特征值1的两个特征向量,α
2
+α
3
是A的属于特征值4的特征向量.又α
1
-α
2
,aα
1
-α
3
线性无关,从而α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
线性无关,故P=(α
1
-α
2
,2α
1
-α
3
,α
2
+α
3
)为所求的可逆矩阵.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/dFD4777K
0
考研数学三
相关试题推荐
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,其中a为常数.若n为整数,则f(n)=_______.
设总体X的概率密度为其中未知参数θ>0,设X1,X2,…,Xn是来自总体X的简单样本.该估计量是否是无偏估计量?说明理由.
设总体X的概率密度为f(x;α,β)=其中α和β是未知参数,利用总体X的如下样本值一0.5,0.3,一0.2,一0.6,一0.1,0.4,0.5,一0.8,求α的矩估计值和最大似然估计值.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设函数f(x)=ax(a>0,a≠1),则=______.
设随机变量X的密度函数为则P{|X—E(X)|<2D(X)}=______.
设线性相关,则a=___________.
已知A是3阶实对称矩阵,满足A4+2A3+A2+2A=0,且秩r(A)=2.求矩阵A的全部特征值,并求秩r(A+E).
将函数f(x)=arctan展开成x的幂级数.
(2001年)已知f(x)在(一∞,+∞)上可导,且求c的值.
随机试题
高锰酸钾法中能用盐酸作酸性介质。()
尿沉渣显微镜检低倍视野下见到3个透明管型能确诊管型尿吗
一氧化碳中毒患者氧疗的最好方法是
A.碱提酸沉法B.水蒸气蒸馏法C.酸提碱沉法D.煎煮法E.乙醇沉淀法加热提取药材中的水溶性成分可选用
阅读下面高中必修三《劝学》教学备课实录(节选),按要求回答问题。在研究单元特点及学生学习状况之后,我设计了《劝学》的教学目标和教学重难点,同时选取了教学方法。在设计第一课时的课文导入时,我有四种思路:①从学习的意义、作用、方法和态度入手
Intermsoftheplaceofarticulation,consonantslike/t,s,d,z/canbeclassifiedinto______.
所谓投射效应是指以己度人,认为自己具有某种特性,他人也一定会有与自己相同的特性,把自己的感情、意志、特性投射到他人身上并强加于人的一种认知障碍。即在人际认知过程中,人们常常假设他人与自己具有相同的属性、爱好或倾向等,常常认为别人理所当然地知道自己心中的想法
一、注意事项1.申论考试是对考生阅读理解能力、综合分析能力、提出和解决问题能力以及文字表达能力的测试。2.作答参考时限:阅读资料40分钟,作答110分钟。3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定资料
统计图2002-2005年农村居民人均现金收入农村居民人均现金收入同比增长最低的是()。
Classicismasadoctrineseekswhatisuniversallytruthandgood.
最新回复
(
0
)