首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得 ∫0ξf(x)dx=(1一ξ)f(ξ).
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得 ∫0ξf(x)dx=(1一ξ)f(ξ).
admin
2017-07-26
108
问题
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得
∫
0
ξ
f(x)dx=(1一ξ)f(ξ).
选项
答案
变量可分离的微分方程得F(x)=[*],即(1一x)F(x)=c. 作辅助函数φ(x)=(1一x)F(x),用洛尔定理证明. 证 令 φ(x)=(1一x)F(x)=∫
0
x
f(t)dt—x∫
0
x
f(t)dt, 则φ(x)在[0,1]上连续,在(0,1)内可导,且φ(0)=φ(1)=0. 由洛尔定理,存在点ξ∈(0,1),使得φ’(ξ)=0,即 f(ξ)一∫
0
ξ
f(t)dt一ξf(ξ)=0, 故有∫
0
ξ
f(t)dt=(1一ξ)f(ξ). 用反证法证明唯一性. 假若在(0,1)内存在点ξ
1
、ξ
2
,不妨设ξ
1
<ξ
2
,使得 [*] =(1一ξ
2
)[f(ξ
2
)一f(ξ
1
)]一(ξ
2
一ξ
1
)f(ξ
1
). 由已知条件可知,上式的左边大于零,而右边小于零矛盾,故点ξ是唯一的.
解析
记F(x)=∫
0
x
f(t)dt,欲证存在点ξ,使得F(ξ)=(1—ξ)F’(ξ)
F(x)=(1一x)F’(x).
转载请注明原文地址:https://www.kaotiyun.com/show/cuH4777K
0
考研数学三
相关试题推荐
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
[*]
设一下命题:①若(u2n-1+u2n)收敛,则un收敛.②若un收敛,则un+1000收敛.③若un+1/un>1,则un发散.④若(un+vn)收敛,则un,vn都收敛.则以上命题中正确的是
设其导函数在x=0处连续,则λ的取值范围是__________.
设A为3阶矩阵,P为3阶可逆矩阵,且若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则Q-1AQ=().
设f(x)为二阶连续可导,且.证明级数绝对收敛.
证明不等式:xarctanx≥ln(1+x2).
证明:当x>0时,arctanx+。
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f"(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+.
设0<k<1,f(x)=kx—arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x1)=0.
随机试题
简述亨利.法约尔一般管理理论的主要贡献。
修磨和改制铣削模具型腔的专用锥度立式铣刀时,主要是手工修磨铣刀的()。
常用的网络安全产品主要包括:___________、反病毒系统、身份认证系统、入侵检测系统、VPN设备等。
患者,女,41岁。现不寐,性情急躁易怒,不思饮食,口渴喜饮,目赤口苦,小便黄赤,大便秘结,舌红苔黄,脉弦而数。其治法是
采用摆式仪测试路面抗滑值时,当橡胶片()时,应该更换新的橡胶片。
习近平总书记强调,“每个党政组织、每个领导干部必须服从和遵守宪法法律,不能把党的领导作为个人以言代法、以权压法、徇私枉法的挡箭牌”。对此,你怎么看?
西方人在不断批判自己:康德批判、黑格尔批判、“科学理性批判”、“工业资本主义批判”,等等;通过批判前人,后人成就出新的理论和新的体系,如亚当·斯密批判重商主义,凯恩斯批判国家放任主义,新的“主义”在批评中产生,西方经济学就是这样发展的。设想哪一天,中国学术
某县集体企业兴旺木器厂原生产家具。该县人民政府为发展农业,命令该厂生产农具。该厂对县政府的命令不服,向地区中级人民法院提起行政诉讼。问题:1.兴旺木器厂对县政府的上述决定能否起诉?为什么?2.地区中级人民法院是否应该受理该案,为什么?
DDL是
—Excuseme,couldyoutellmethetime?—Sorry.Idon’thavemywatchwithme.
最新回复
(
0
)