首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
下面是人教版普通高中数学教科书必修,5的内容,据此回答下列问题。 国际象棋起源于古代印度,相传国王要奖赏国际象棋的发明者,问他想要什么,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依此类推,每个格子
下面是人教版普通高中数学教科书必修,5的内容,据此回答下列问题。 国际象棋起源于古代印度,相传国王要奖赏国际象棋的发明者,问他想要什么,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依此类推,每个格子
admin
2018-06-07
66
问题
下面是人教版普通高中数学教科书必修,5的内容,据此回答下列问题。
国际象棋起源于古代印度,相传国王要奖赏国际象棋的发明者,问他想要什么,发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依此类推,每个格子里放的麦粒效都是前一个格子里放的麦粒数的2倍,直到第64个格子,请给我足够的麦粒以实现上述要求。”国王觉得这个要求不高,就欣然同意了,假定千粒麦子的质量为40g,据查,目前世界年度小麦产量约6亿t,根据以上数据,判断国王是否能实现他的诺言.
让我们一起来分析一下,如果把各格所放的麦粒数看成一个数列,我们可以得到一个等比数列,它的首项是1,公比是2,求第1个格子到第64个格子各格所放的麦粒数总和就是求这个等比数列前64项的和.
一般地,对于等比数列
a
1
,a
2
,a
3
,…,a
n
,…,
它的前n项和是
S
n
=a
1
+a
2
+a
n
+…+a
n
,
根据等比数列的通项公式,上式可写成
S
n
=a
1
+a
1
q+a
1
q
2
+…+a
1
q
—1
.①
我们发现,如果用公比q乘①的两边,可得
qS
n
=a
1
q+a
1
q
2
+...+a
1
q
n—1
+a
1
q
n
,②
①②的右边有很多相同的项,用①的两边分别减去⑦的两边,就可以消去这些相同的项,得
(1—q)S
n
=a
1
—a
1
q
n
.
当q≠1时,等比数列的前n项和的公式为
因为a
n
=a
1
q
n—1
,所以上面的公式还可以写成
有了上述公式,就可以解决本节开头提出的问题.
由a
1
=1,q=2,n=64,可得
=2
64
—1。
2
64
—1这个数很大,超过了1.84×10
19
.估计千粒麦子的质量约为40g,那么麦粒的总质鬣超过了7000亿吨,因此,国王不能实现他的诺言.
问题:
写出这节课的教学重难点;
选项
答案
教学重点:掌握等比数列前n项和公式及利用公式解决问题; 教学难点:数列前n项和公式的推导。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/cftv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
下面是某教师在讲授高一思想政治必修1《发展生产满足消费》中“生产决定消费”的教学片段,分析其教学思路。教师提问:①漫画“今非昔比”中,坐拥江山和美人的皇帝为何坐不上飞机、不能吹空调?(最后得出“生产决定消费的对象”)回答①后,教师给出形象比喻:种瓜
“人机大战”让我们真切地感受到了人工智能带给人类智慧的挑战与压力,促使我们更为深刻地理解人工智能所蕴含的机遇与风险。人工智能的发展说明()。①真理在发展过程中不断地超越自身②实践的发展延伸了人类的认识器官③实践的发展推动着认识的不断深化④认
随着中考的日益临近,有些同学心理压力越来越大,出现了情绪紧张、心烦意乱、记忆卡壳等考试焦虑现象。针对这种现象,下列说法正确的是()。①乐观自信,以平常心面对考试,可以缓解考试焦虑②严重的焦虑源于他人对自己的评价③考前适度的担心紧张是正常的心理
某村开展集体资产确权到户和股份合作制改革,实现了农村“资源变资产、资金变股金、农民变股东”。在立足供需对接的基础上,发展了农村集体经济,赢得了农民的高度认可。材料表明,发展农村经济应()。①不断完善农村生产关系②以市场为导向优化农业产业
下列不是我国现代企业制度基本特征的是()。
一般情况下,银行利率提高,股市会做出股票价格下降的反应。对于产生这一反应的合理解释是()。①银行业利润高于其他行业②投资者改变投资组合③投资者预期企业利润下降④股民的投资收益减少
欧式平面R2上的下列变换不是保距变换的是()。
设M为3×3实数矩阵,α为M的实特征值λ的特征向量,则下列叙述正确的是().
如下图所示,设0<a<b,函数f(x)在[a,b]上连续,在(a,b)可微且f(x)>0,f(x)=f(b)。设l为绕原点O可转动的细棍(射线),放手后落在函数f(x)的图象上并支撑在点A(ζ,f(ζ))上,从直观上看。证明函数F(x)=在ζ处取得最大
已知矩阵,求曲线y2-x+y=0在矩阵M-1对应的线性变换作用下得到的曲线方程。
随机试题
试述糖皮质激素有哪些临床用途。
衡量组织管理水准和业务绩效的晴雨表是______。
当冲突无关紧要的时候,或当冲突双方情绪极为激动,需要时间慢慢恢复平静时,可采用()策略。
生物指示剂有芽胞菌片与培养基混合装的指示管。所用生物指示剂中
男,65岁,高血压近30年,近10天来出现心慌、气短,咯粉红色泡沫痰,双肺满布湿啰音,坐位时呼吸困难减轻,现住院。如病人突然发生剧烈头痛伴喷射性呕吐,应考虑是
在固定总价合同形式下,承包人承担的风险是()。
帝国主义列强并没有实现瓜分中国的图谋,根本的原因是
(1998年试题,一)
设窗体上有一个列表框控件List1,且其中含有若干列表项,则以下能表示当前被选中的列表项内容的是______。
AlthoughKellerachievednational(i)______|as!ahero,hislamentable(ii)______inthepoliticalarenasoonbecamepainfullyapp
最新回复
(
0
)