首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).
[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).
admin
2021-01-25
46
问题
[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).
选项
A、r(A,AB)=r(A)
B、r(A,BA)=r(A)
C、r(A,B)=max{r(A),r(B)}
D、r(A,B)=r(A
T
B
T
)
答案
A
解析
解一 易知r(A,AB)≥r(A).又由分块矩阵的乘法,可知(A,AB)=A(E,B),因此r(A,AB)≤min{r(A),r(E,B)},
从而 r(A,AB)≤r(A)
所以r(A,AB)=r(A),故选项(A)正确.
解二 排除法
对选项(B),取
则r(A)=1,r(A,BA)=2.
对选项(C),取
则r(A)=r(B)=1,r(A,B)=2.
对选项(D),取
则r(A,B)=1,r(A
T
,B
T
)=2.
转载请注明原文地址:https://www.kaotiyun.com/show/cMx4777K
0
考研数学三
相关试题推荐
交换积分次序=_______________。
设两个相互独立的事件A与B至少有一个发生的概率为,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=________.
已知方程组无解,则a=_______.
A、当t≠2时,r(A)=1B、当t≠2时,r(A)=2C、当t=2时,r(A)=1D、当t=2时,r(A)=2A方法一:当t≠2时,为AX=0的两个线性无关的解,从而3-r(A)≥2,r(A)≤1,又由A≠0得r(A)≥1,即r(A)=1,应选(
的渐近线的条数为().
对于一切实数t,函数f(t)为连续的正函数且可导,又f(-t)=f(t),设g(χ)=∫-aa|χ-t|f(t)dt,a>0,χ∈[-a,a].(Ⅰ)证明g′(χ)单调增加;(Ⅱ)求出使g(χ)取得最小值的χ;(Ⅲ)将g(χ)
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明厂在正交变换下的标准形为2y12+y22.
设z=f(x,y)在点(1,2)处存在连续的一阶偏导数,且f(1,2)=2,f’1(1,2)=3,f’2(1,2)=4,φ(x)=f(x,f(x,2x)).求.
设随机变量X1,X2,…,X12独立同分布且方差存在,则随机变量U=X1+X2+…+X7,V=X6+X7+…+X12的相关系数ρpv=____________.
设y=y(x)是二阶常系数微分方程y’’+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
随机试题
初产妇,40周妊娠临产10小时,已破膜7小时,宫缩规律,30”/4’~5’,胎心150次/分,羊水I度污染。阴道检查:宫口开大5cm,S=0,矢状缝在右斜径上,小囟门在7点处,坐骨棘稍突,坐骨切迹(大于)2横指,骶骨浅弧型。下列哪些诊断是正确的
受体与药物结合的构象是
腺垂体功能减退症危象最常见的诱发因素是
A.6-磷酸葡萄糖脱氢酶B.苹果酸脱氢酶C.丙酮酸脱氢酶D.NADH脱氢酶E.葡萄糖-6-磷酸酶属于糖异生的酶是
A.清心除烦B.清肺化痰C.清肝明目D.清胃止呕E.清肠疗痔硼砂的功效是
依法执政是中国共产党执政的基本方式,下列能直接体现这一方式的是()。①全党开展深入学习实践科学发展观②党的主张经过法定程序上升为国家意志③党支持人民代表大会依法履行职能④党领导政协发挥政治协商和民主监督作用
妇女社会工作主要是以妇女为服务对象的社会工作,其工作内容涉及面很广。以下针对全体女性人口的妇女社会工作有()。[2009年真题]
公元1616年,莎士比亚与汤显祖同年逝世。二人都可算作16、17世纪之交的伟大剧作家。二人都爱写剧本,不过写法却不大一样。比如《罗密欧与朱丽叶》故事临近结尾,一双恋人殉情身亡,惨烈的悲剧以双方家族的和解收尾。和解的意愿的确美妙,只可惜,莎翁用于和解的笔墨太
宪法与宪政存在非常密切的联系,可以说()。
在应用程序中剪切一段文本后,则该文本被 ( )
最新回复
(
0
)