首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(13年)矩阵相似的充分必要条件为 【 】
(13年)矩阵相似的充分必要条件为 【 】
admin
2017-05-26
64
问题
(13年)矩阵
相似的充分必要条件为 【 】
选项
A、a=0,b=2.
B、a=0,b为任意常数.
C、a=2,b=0.
D、a=2,b为任意常数.
答案
B
解析
B为对角矩阵,B的特征值为其主对角线元素2,6,0.若A与B相似,则由相似矩阵有相同的特征值,知2为A的一个特征值,从而有
由此得a=0.当a=0时,矩阵A的特征多项式为
由此得A的全部特征值为2,b,0.以下可分两种情形:
若b为任意实数,则A为实对称矩阵,由于实对称矩阵必相似于对角矩阵,且对角矩阵的主对角线元素为该实对称矩阵的全部特征值,所以此时A必相似于B.综上可知,A与B相似的充分必要条件为a=0,b为任意常数.所以只有选项B正确.
转载请注明原文地址:https://www.kaotiyun.com/show/atH4777K
0
考研数学三
相关试题推荐
设A,B皆为n阶矩阵,则下列结论正确的是().
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.(Ⅰ)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩阵B.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设三阶矩阵A=,三维列向量a=(a,1,1)T.已知Aa与a线性相关,则a_________.
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
随机试题
A.胎龄满42周以上B.出生体重4200克C.出生体重在同胎龄儿平均体重的第85百分位D.胎龄37周,出生体重1800克E.胎龄36周,出生体重1800克适于胎龄儿是指
软膏剂中加入Azone和DMSO的目的是
正确保管牙刷的方法是
A.气能行血B.气能行津C.气能摄津D.血能载气E.津血同源“夺血者无汗”的理论基础是()
西方金融机构投资于股权投资基金的主要方式是()。
甲公司与股权投资的相关资料如下:(1)甲公司原持有乙公司30%的股权,并能够对乙公司施加重大影响。2019年1月1日,甲公司支付银行存款13000万元,进一步取得乙公司50%的股权,并能够控制乙公司的财务经营决策。原投资账面价值为5400万元(包括投资成
若x-2y=2,则的最小值是_________.
无论当下的生活多么衣食无忧,中国人还是爱假想将来可能遇到的_______,即使这些真正发生的几率接近于零。这只能从中国人_______的传统心理方面进行解释。填入划横线部分最恰当的一项是()。
若a1,a2,a3,β1,β2都是4维列向量,且4阶行列式|a1,a2,a3,β1|=m,|a1,a2,β2,a3|=n,则4阶行列式|a1,a2,a3,β1+β2|=
HowmuchhastheGinicoefficientofIndiarisenfrom2011to2018?
最新回复
(
0
)