首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数x=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
已知函数x=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x2+≤1}上的最大值和最小值。
admin
2021-01-19
54
问题
已知函数x=f(x,y)的全微分dz=2xdx-2ydy,并且f(1,1)=2。求f(x,y)在椭圆域D={(x,y)|x
2
+
≤1}上的最大值和最小值。
选项
答案
由题设可知 [*] 于是f(x,y)=x
2
+C(y),且C’(y)=-2y,从而C(y)=-y
2
+C,再由f(1,1)=2,得C=2,故f(x,y)=x
2
-y
2
+2。 令[*]=0得可能极值点为(0,0)。 再考虑其在边界曲线x
2
+[*]=1上的情形。 作拉格朗日函数 F(x,y,λ)=f(x,y)+λ(x
2
+[*]-1), 解得 [*] 得可能极值点(0,2),(0,-2),(1,0),(-1,0)。 将上述各点代入f(x,y)得f(0,0)=2,f(0,±2)=-2,f(±1,0)=3,可见z=f(x,y)在区域D={(x,y)|x
2
+[*]≤1)内的最大值为3,最小值为-2。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zq84777K
0
考研数学二
相关试题推荐
设函数y=y(χ)由方程χsiny-eχ+ey=0所确定,求=_______.
证明极限不存在.
设L:y=e-x(x≥0).求由y=e-x、x轴、y轴及x±a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
设e<a<6,证明a2<<b2。
设矩阵,B=(E+A)-1(E—A),求(E+B)-1.
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记μ(x,y)=。
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
η*是非齐次线性方程组Ax=b的一个解,ξ1,…,ξn-r是对应的齐次线性方程组的一个基础解系。证明:η*,η*+ξ1,…,η*+ξn-r线性无关。
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>-,证明(1)中的c是唯一的.
随机试题
摩洛哥人酷爱饮茶,()是摩洛哥人社交活动中必备的饮料。
人群易感性降低的因素为
十四经穴总数为()
A.丙米嗪B.马普替林C.吗氯贝胺D.舍曲林E.文拉法辛三环类抗抑郁药()。
B公司是一家上市公司,2010年年末公司总股份为10亿股,当年实现净利润为4亿元,公司计划投资一条新生产线,总投资额为8亿元,经过论证,该项目具有可行性。为了筹集新生产线的投资资金,财务部制定了两个筹资方案供董事会选择。方案一:发行可转换公司债券
陈述性知识一般以()形式在头脑中贮存和表征。
信息化教学设计的基本原则不包括()。
南方航空公司目前开始为旅行者提供网上订票服务,然而,在近期内,电话订票并不会冈此减少。以下各项不能解释上述现象的是()。
设置参照完整性的目的是()。
Farewell,Libraries?Amazon,corn’srecentannouncementthatsalesofe-booksattheonlinemegastorehadovertakensalesof
最新回复
(
0
)