首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组。则( )正确.
设η1,η2,η3为3个n维向量,AX=0是n元齐次方程组。则( )正确.
admin
2017-11-22
94
问题
设η
1
,η
2
,η
3
为3个n维向量,AX=0是n元齐次方程组。则( )正确.
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n—3,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系,则它也是AX=0的基础解系.
D、如果r(A)=n—3,并且AX=0每个解都可以用η
1
,η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系.
答案
D
解析
(A)缺少n—r(A)=3的条件.
(B)缺少η
1
,η
2
,η
3
线性无关的条件.
(C)例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系.
要说明(D)的正确性,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关.方法如下:
设α
1
,α
2
,α
3
是AX =0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是
3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,
则 r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解.
转载请注明原文地址:https://www.kaotiyun.com/show/Z6X4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
证明:
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
设函数f(x)满足xf’(x)一2f(x)=一x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求: (1)曲线y=f(x);(2)曲线在原点处的切线与曲线及直线x=1所围成的平面图形的
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
求f(x)=的间断点并判断其类型.
已知线性方程组及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
讨论函数的连续性.
设f(x)=∫01-cosxsint2dt,g(x)=,则当x→0时,f(x)是g(x)的().
随机试题
患者血药浓度一时间曲线出现双峰或者多峰现象可能发生在
关于按施工图预算实行以收定支的具体方法,正确的有()。
恶性肿瘤的分期的依据有
目前导致我国人群死亡的前10位疾病的病因和疾病危险因素中,比例最高的是
根据所给资料。回答下列问题。2014年上半年,北京市接待旅游总人数1.16亿人次,比上年同期增长5.9%;实现旅游总收入1907.2亿元,同比增长8.2%。上半年,北京市接待国内游客1.14亿人次,同比增长6.2%;实现国内旅游总收入1
“天苍苍,野茫茫,风吹草低见牛羊”的景观是指()。
下图表示某区域降水量的空间分布。读图,完成下列问题。下列选项中的气候资料,与上图中R城市气候相符的是()。
黄某说张某胖,张某说范某胖,范某和覃某都说自己不胖。如果四人陈述只有一个错,那么谁一定胖?
Access数据库中,为了保持表之间的关系,要求在主表中修改相关记录时,子表相关记录随时之更改。为此需要定义参照完整性关系的
Mostpeoplewillprobablythinkthatliteratureisaformofartthatcanbeenjoyedwithoutformalinstruction.However,people
最新回复
(
0
)