首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATAX=ATb一定有解.
admin
2015-07-22
66
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
AX=A
T
b一定有解.
选项
答案
(1)设r(A)=r
1
,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故 AX=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所 以n-r
1
≤n一r
2
,故有r
2
≤r
1
,即 r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=O,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
, 则(AX)
T
(AX)=[*]=0,必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足 方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解 [*](A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)-r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性 组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
| A
T
b)=r(A
T
A |A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Z5U4777K
0
考研数学三
相关试题推荐
2022年中央一号文件指出,巩固()扶贫工程成效,在有条件的脱贫地区发展()产业。
在同一社会制度内,时代的变化,主要衡量标准是发展水平质的提升,或者发生影响全局的重大变革。中国特色社会主义进人了新时代的重大判断,不是历史学的时代分期,也不是纯学术的概念,而是对我们党和国家事业发展到一个新阶段的标定,是对我国过去发展成就的充分肯定,也是对
设f(x)是处处可导的奇函数,证明:对任-b>0,总存在c∈(-b,b)使得fˊ(c)=f(b)/b.
利用已知函数的幂级数展开式,求下列幂级数的和函数,并指出其收敛区间:
将函数展为x的幂级数.
用Γ函数表示下列积分,并指出这些积分的收敛范围。
求下列向量场A沿定向闭曲线Γ的环流量:(1)A=-yi+xj+ck(c为常数),Γ为圆周x2+y2=1,z=0,从z轴正向看去,Γ取逆时针方向;(2)A=3yi-xzj+yz2k,Γ为圆周x2+y2=4,z=1,从z轴正向看去,Γ取逆时针方向.
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
将函数y=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
求幂级数x2n的收敛域和函数.
随机试题
引起汽油机混合气过稀的原因有哪些?
[2010年,第102题]在windows中,对存储器采用分段存储管理时,每一个存储段小至一个字节,大至()。
属于金属保护层的有黑铁皮、( )、聚氯乙烯复合钢板和不锈钢板等。
下面关于行政许可设定的说法,正确的有()。
在学前心理学中,儿童在每个年龄阶段中形成并表现出来的一般的、本质的、典型的心理特征被称为()
【2011年福建.案例分析】某位教师曾经采用了很多教育方法,坚持不懈地帮助班上一位性格孤僻、行为散漫、对学习不感兴趣的孩子。一次偶然的机会,她看到了《捣蛋鬼日记》,认真阅读后,对儿童的身心发展有了新的理解,开始反省自己对这个孩子的教育。当她发现孩子的绘画特
化学与生活密切相关,下列说法正确的是()。
物质:意识
关于因特网防火墙,下列叙述中错误的是()。
Withbetterequipment,we(do)______itbetter.
最新回复
(
0
)