首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X与Y的联合概率分布为 又P{Z+Y=1}=0.4,则α=______;β=______;P{X+Y<1}=______;P{X2Y2=1} =________.
已知随机变量X与Y的联合概率分布为 又P{Z+Y=1}=0.4,则α=______;β=______;P{X+Y<1}=______;P{X2Y2=1} =________.
admin
2019-03-12
54
问题
已知随机变量X与Y的联合概率分布为
又P{Z+Y=1}=0.4,则α=______;β=______;P{X+Y<1}=______;P{X
2
Y
2
=1} =________.
选项
答案
0.3;0.1;0.4;0.3
解析
由0.1+0.2+α+β+0.1+0.2=1
及P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=α+0.1=0.4
解得α=0.3,β=0.1.于是
P{X+Y<1}=
{X=i,Y=j}
=P{X=0,Y=-1}+P{X=0,Y=0}+P{X=1,Y=-1}
=0.1+0.2+0.1=0.4;
P{X
2
Y
2
=1}=P{X=1,Y=-1}+P{X=1,Y=1}=0.1+0.2=0.3.
转载请注明原文地址:https://www.kaotiyun.com/show/YjP4777K
0
考研数学三
相关试题推荐
给定向量组(I)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,一1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(I)和(Ⅱ)等价?a为何值时(I)和(Ⅱ)不等价?
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设α1,α2,…,αr,和β1β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1β2,…,βs}线性相关甘存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1β2,…,βs线性表示.
设f(x)=试将f(x)展开成x的幂级数.
将f(x)=xln展开为x的幂级数,并求f(n)(0),其中n=1,2,3,….
若级数(x一a)n当x>0时发散,而当x=0时收敛,则常数a=________.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).求常数a,b,使.
设二维连续型随机变量(X,Y)在区域D={(x,y)|0≤y≤x≤3一y,y≤1}上服从均匀分布,求边缘密度fY(x)及在X=x条件下,关于Y的条件概率密度.
设总体X~N(0,σ2),参数σ>0未知,X1,X2,…,Xn是取自总体X的简单随机样本(n>1),令估计量求的数学期望;
已知总体X是离散型随机变量,X可能取值为0,1,2,且P{X=2}=(1—θ)2,EX=2(1—θ)(θ为未知参数).对X抽取容量为10的样本,其中5个取1,3个取2,2个取0,求θ的矩估计值、最大似然估计值.
随机试题
A、去枕平卧位B、平卧位C、仰卧中凹位D、半卧位E、高斜坡卧位颅脑手术后应采取()。
高科技应用所带来的医学难题是
A.应该在指定医疗机构内用于特定医疗目的B.只能在本医疗机构内部凭医师处方使用C.必须是临床急需而市场上没有供应的D.必须是临床急需而市场供应少的E.是公共利益需要的医疗机构配制的制剂在指定的医疗机构之间调剂
()可适用于以交钥匙方式提供工厂或类似设施的加工或动力设备、基础设施项目或其他类型的开发项目,采用总价合同。
某工程合同价为1000万元,合同约定:物价变化时合同价款调整采用价格指数法,其中固定要素比例为0.3,调价要素为人工费、钢材、水泥三类,分别占合同价的比例为0.2、0.15、0.35,结算时价格指数分别增长了20%、15%、25%,则该工程实际价款的变化值
新产品落后采用者的特点有()。
体操中的保护分为()几种。
注意研究的过滤范式的类型有
Hispoorstandardofplayfullyjustifieshis______fromtheteamforthematchnextSaturday.
EconomizingofthePoorComprehendingEconomizingofthePoorWalkingdowntheaislesofasupermarket,low-incomeshoppers
最新回复
(
0
)