首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα=5α1-α2,Aα3=α1-α2+4α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵Q,使得Q﹣1AQ为对角矩阵.
设A为三阶矩阵,α1,α2,α3是三维线性无关的向量组,且Aα1=α1+3α2,Aα=5α1-α2,Aα3=α1-α2+4α3. (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵Q,使得Q﹣1AQ为对角矩阵.
admin
2019-06-06
73
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是三维线性无关的向量组,且Aα
1
=α
1
+3α
2
,Aα=5α
1
-α
2
,Aα
3
=α
1
-α
2
+4α
3
.
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵Q,使得Q
﹣1
AQ为对角矩阵.
选项
答案
(Ⅰ)令P=(α
1
,α
2
,α
3
),因为α
1
,α
2
,α
3
线性无关,所以P可逆.因为Aα
1
=α
1
+3α
2
,Aα
2
=5α
1
-α
2
,Aα
3
=α
1
-α
2
+4α
3
,所以(Aα
1
,Aα
2
,Aα
3
)=(α
1
+3α
2
,5α
1
-α
2
,α
1
-α
2
+4α
3
), [*] 得A的特征值为λ
1
=﹣4,λ
2
=λ
3
=4. (Ⅱ)因为A~B,所以B的特征值为λ
1
=﹣4,λ
2
=λ
3
=4.当λ
1
=﹣4时,由(﹣4E-B)X=0得ξ
1
=[*]当λ
2
=λ
3
=4时,由(4E-B)X=0得[*]令P
1
=(ξ
1
,ξ
2
,ξ
3
)=[*]则P
1
﹣1
BP
1
=[*]因为P
﹣1
AP=B,所以P
1
﹣1
P
﹣1
APP
1
=P
1
﹣1
BP
1
=[*]或(PP
1
)
﹣1
A(PP
1
)=[*]取Q=PP
1
=(﹣α
1
+α
2
,5α
1
+3α
2
,α
1
+3α
3
),则Q
﹣1
AQ=[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YhJ4777K
0
考研数学三
相关试题推荐
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=______.
设随机变量X~E(λ),令Y=求P(X+Y-0)及FY(y).
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(-a)+F(a)与1的大小关系.
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.(1)一次性抽取4个球;(2)逐个抽取,取后无放回;(3)逐个抽取,取后放回.
已知z=f(x,y)满足:dz=2xdx一4ydy且f(0,0)=5.求f(x,y)在区域D={(x,y)|x2+4y2≤4}上的最小值和最大值.
改变积分次序
求的极值.
求曲线的渐近线.
(2000年)求函数的单调区间和极值,并求该函数图形的渐近线.
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:问平均内径μ取何值时,销售一个零件的平均
随机试题
马克思主义哲学中国化的两大理论成果是()。
A.寒热错杂证B.真热假寒证C.真寒假热证D.表寒里热证经常脘腹冷痛喜按,泛吐清涎,口苦微渴,小便黄,舌质红苔薄黄,脉沉弦。属于
患者,男,19岁。用油漆刷墙后发生喘息1天,伴轻咳、咳少量黏白痰,有过敏性鼻炎病史2年。治疗首先选择
A、颅面分离B、耳、鼻出血C、复视D、张口受限E、局部水肿眶底骨折常伴有
下列可以引起全身淋巴结肿大的疾病是
通过粪便检查可确定哪种疾病
如果同时买入两种风险资产而形成资产组合A,则该组合的方差介于这两种风险资产的方差之间。( )
语言系统是由不同层级构成的,低一级的单位少,组成高一级后数量翻番增量。()
TheDevelopmentofAmericanPostalSystemIntheearlydaysoftheUnitedStates,postalchargeswerepaidbytherecipient
A、Hewantstotellthewomanwhatstepsshouldbetaken.B、Theexperienceisbeneficialforoverseastourguides.C、Hehashandl
最新回复
(
0
)