首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
admin
2016-10-20
44
问题
已知A是m×n矩阵,B是n×P矩阵,r(B)=n,AB=0,证明A=0.
选项
答案
(1)由r(B)=n,知B的列向量中有n个是线性无关的,设为β
1
,β
2
,…,β
n
.令B
1
=(β
1
,β
2
,…,β
n
),它是n阶矩阵,其秩是n,因此B
1
可逆.由AB=0,知AB
1
=0,那么右乘B
1
-1
,得A=(AB
1
)B
1
-1
=OB
1
-1
=0. (2)由AB=0知B=(β
1
,β
2
,…,β
P
)的每一列都是齐次方程组Ax=0的解,因为r(B)=n,故Ax=0至少有n个线性无关的解,但Ax=0最多有n-r(a)个线性无关的解,于是n≤n-r(A) [*]r(A)≤0,按秩的定义又有r(A)≥0,所以r(A)=0,即A=0. (3)对矩阵B按行分块,有 [*] 那么 a
11
α
1
+a
12
α
2
+…+a
1n
α
n
=0. 因为r(B)=r(α
1
,α
2
,…,α
n
)=n,知α
1
,α
2
,…,α
n
线性无关,于是组合系数 a
11
=a
12
=…=a
1n
≡0. 同理,得a
ij
≡0,即A=0. (4)由AB=0 知r(A)+r(B)≤n.又r(B)=n,故r(A)≤0.显然r(A)≥0.所以必有r(A)=O,即有A=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/YeT4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
设P(x1,y1)是椭圆外的一点,若Q(x2,y2)是椭圆上离P最近的一点,证明PQ是椭圆的法线.
将函数分别展开成正弦级数和余弦级数.
验证函数u=e-kn2tsinnx满足热传导方程ut=kuxx.
验证下列P(x,y)dx+Q(x,y)dy在整个xOy平面内是某一函数u(x,y)的全微分,并求一个这样的u(x,y):(1)(x+2y)dx+(2x+y)dy;(2)(6xy+2y2)dx+(3x2+4xy)dy;(3)(3x2y+xex)dx+(
计算下列极限:
求一曲线的方程,这曲线过原点,并且它在点(x,y)处的切线斜率等于2x+y。
在“充分而非必要”、“必要而非充分”和“充分必要”三者中选择一个正确的填人下列空格内:(1)f(x)在点x。连续是f(x)在点x。可导的__________条件;(2)f(x)在点x。的左导数fˊ-(x。)及右导数fˊ+=(x。)都存在且相等是f(x)
计算下列极限:
随机试题
A、AllstudentsaremembersoftheStudentUnion.B、AllstudentservicesarerunbytheStudentUnion.C、TheStudentUnionisloc
中毒的一般处理方法不包括
以“疏风清热,宣肺止咳”为功用的方剂是
生活中,家庭经常用小苏打当发酵粉做馒头,小苏打的化学名称是()。
()国防是指一些国家为弥补自身国防力量的不足,以结盟的形式联合相关国家进行防卫的国防。
在行政法律关系中,无论何种情况下,行政机关都有可能成为行政相对方。()
三类线程search、insert、delete共享(访问)单链表,利用P、V原语操作实现这三类线程。限定如下:(1)search可以与同类线程同时执行;(2)insert类线程之间互斥,但是可以与任意多search同时执行;(3)del
Excel没有的操作是()。A.自动排版B.自动填充数据C.自动求和D.自动筛选
考生文件夹下存在一个数据库文件“samp3.accdb”,里面已经设计了表对象“tEmp”,窗体对象“fEmp”,报表对象“rEmp”和宏对象“mEmp”。试在此基础上按照以下要求补充设计:“fEmp”窗体上单击“输出”命令按钮(名为“btnP”),实
AreweatthebeginningofanotherAgeofExploration?Perhapsevenmoreimportant,areweatthebeginningof【C1】______AgeofC
最新回复
(
0
)