首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组Aχ=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明χ=k1η1+k2η2+…+ksηs也是方程组的解.
设η1,…,ηs是非齐次线性方程组Aχ=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明χ=k1η1+k2η2+…+ksηs也是方程组的解.
admin
2016-05-09
94
问题
设η
1
,…,η
s
是非齐次线性方程组Aχ=b的s个解,k
1
,…,k
s
为实数,满足k
1
+k
2
+…+k
s
=1.证明χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
也是方程组的解.
选项
答案
由于η
1
,…,η
s
是非齐次线性方程组Aχ=b的s个解,故有 Aη
i
=b(i=1,…,s), 当χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
, 有Aχ=A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=k
1
Aη
1
+k
2
Aη
2
+…+k
s
Aη
s
=b(k
1
+…+k
s
)=b, 即Aχ=b(χ=k
1
η
1
+k
2
η
2
+…+k
s
η
s
), 由此可χ也是方程的解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Xgw4777K
0
考研数学一
相关试题推荐
设矩阵A是秩为2的4阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,一2)T,则方程组Ax=b的通解x=___
设f(x)连续且F(x)=为().
[*]
已知二次型f(x1,x2,x3)=xTAx,A是3阶实对称矩阵,满足A2-2A-3E=O,且|A|=3,则该二次型的规范形为()
设矩阵Am×n,r(A)=m<n,Em为m阶单位矩阵,下述结论中正确的是().
设向量组(Ⅰ):a1,a2,…,ar可由向量组(Ⅱ):β1,β2,…,βs线性表示,则().
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是__________,a=__________.
过空间一点P(1,3,-4)且与直线L:平行的直线方程是().
设χOy平面上有正方形D={(χ,y)|0≤χ≤1,0≤y≤1)及直线l:χ+y=t(t≥0).若S(t)表示正方形D位于直线l左下方部分的面积,试求∫0χS(t)dt(χ≥0).
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
关于柳氮磺吡啶治疗克罗恩病的叙述,错误的是
CR系统中,直接记录X线影像信息的载体是
急性腹膜炎最重要的体征是
玻璃幕墙开启部分的设计要求,哪条是正确的?[2000年第076题]
下列选项中,( )不是国外比较常用的个人税务筹划策略。
十七大指出要创造条件让更多群众拥有()。
Ashumanchildrenareunusuallydependentforanunusuallylongtime,it’sobviousthateverysocietymustprovideadomesticco
求(Ⅰ),(Ⅱ)的公共解.
在Pthread线程包中,线程操作pthread_yield表示的是()。
QuantitativeResearchinEducationManyeducationresearchersusedtoworkontheassumptionthatchildrenexperiencediffer
最新回复
(
0
)